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In the 90s, a new approach to model risk was proposed and named Value at
Risk (VaR). Pioneered by JP Morgan (RiskMetrics), VaR has initiated a lot of
debate. One of the major shortcoming of RiskMetrics is its inability to
generate scenarios on a long term horizon (the Monte-Carlo procedure
proposed does not produce the classical mean-reverting properties of interest
rate structure dynamics). In this paper, we propose an alternative approach,
also based on a Monte-Carlo simulation procedure, but using a Kohonen map
quantization to construct conditional probability distributions of interest rate
structure shocks. The procedure is not only able to produce interest rate
structure scenarios which are stable on a long term horizon (five years) but
also these scenarios exhibit properties compatible with the historical interest
rate structure evolution used to compute the conditional probability
distributions.



1 Introduction

Financial institutions run different kinds of risks. The credit risk
corresponds to the risk of failure of a counterpart. The market risk
results from unanticipated movements of prices, interest rates or foreign
exchange rates. The liquidity risk is associated with the impossibility of
closing a position within a short delay. With derivatives, the liquidity
risk also consists in the inability to face the margin call. The operational
risk is the consequence of human or system errors. Finally, the legal risk
occurs when the contract is not enforceable. In this paper, we limit
ourselves to the market risk and more precisely, the interest rate risk.
Management of interest rate risk is one of the key tasks of bank and
insurance financial supervision. The $500 billions cost of the Savings
and Loan (S&L) mess in the 80s shows what mismanagement of interest
rate risk can do to an industry and its deposit-insurance.

The latest advancement of Wall Street in risk measurement is the
so called Value at Risk (VaR). VaR is an estimate of the maximum loss to
be expected over a given period a certain percentage of the time (Beder
1995). The calculation of VaR depends on assumptions and methodology.
There is two common methodologies, historical simulations and Monte-
Carlo simulations over a single short term horizon. In our paper, we
present a methodology to estimate VaR over a long term horizon. We
propose an alternative approach, also based on a Monte-Carlo simulation
procedure, but using Kohonen map classification to construct conditional
probability distributions of interest rate structure shocks. Using them,
we are able to produce interest rate structure scenarios which are not
only stable even over a five year horizon but also exhibit properties
compatible (sharing common statistical features) with the historical
interest rate structure evolution used to compute the conditional
probability distributions.

The first section of the paper is devoted to a short presentation of
Value at Risk (VaR) methodology. There we will specify the precise
position of this work. The second section presents the Kohonen
algorithm. Some useful references on this algorithm and its theoretical
properties will be given. The data set is presented in the third section.
The fourth section presents the proposed approach in three steps : the
previous works, the relation between initial interest rate structure and
interest rate shocks and the simulation procedure. In the last section of
the paper, we will indicate the direction some future work might take.



2 Value-at-Risk methodology

The classical approach to model risk is to assume that the asset’s
returns are normally distributed or that the prices are lognormal. With
this assumption, the classical tradeoff between risk and return is
represented in a two dimensional space, mean (return) and variance
(risk). With the assumption that the returns have normal multivariate
distribution, the risk of a portfolio only depends on the matrix variance-
covariance of the returns.

Value-at-Risk (VaR)  is an estimate of the maximum potential loss
to be expected over a given period a certain percentage of the time. Risk
is model on the maximum potential loss which can be estimated by
historical or Monte-Carlo simulations. Historical simulations give the
maximum loss over a period of time. The limits of the historical approach
are that the results depend on a past period while the Monte-Carlo
simulations depend on the matrix variance-covariance. A recent study
(Beder 1995) shows that the magnitude of discrepancy among these
methods deviates by more than 14 times for the same portfolio.
Moreover, the VaR results that are calculated by an historical simulation
depend on the behavior of the return during the period. For example,
during a period of decreasing interest rates, risk may be underestimated.
Historical simulations face all the problems encountered by the non
experimental science while Monte-Carlo simulations are well adapted for
very short periods of time (from 1 day to 1 month). For example, the
conceptual framework developped in RiskMetrics (JP Morgan) assumes
that historical returns are generated from a multivariate normal
distribution. From this assumption, future price paths can be simulated
by the Cholesky decomposition. This procedure is adapted to short term
horizon but fails when applied to the long term. The generated scenarios
tend to be explosive because the resulting dynamics of the interest rate
structure do not have mean reverting properties. The generation of those
long term scenarios, while crucial for a bank in the management of
assets and liabilities (ALM)1, still remains a problem hard to solve. In
this paper, we propose a methodology which tries to solve this particular
problem.

In the first step, we will propose the use of the Kohonen algorithm

                                               
1 For example, today, several assets have CAP or FLOOR. A CAP(FLOOR) is a clause
assuring that the interest rate will not be higher (lower) than a certain level. These clauses
affect the profit over a long period and this illustrate why one needs to model the interest
rate structure evolution over a long term horizon.



to overcome the limitations due to the use of the variance-covariance
matrix. Using it, we will show that it is possible to empirically estimate
the relation between the interest rate structure and the distribution of
movements it can undergo.

In the second step, the Monte-Carlo technique will be used to
generate a large number of future interst rate paths on a long term
horizon.

3 The Kohonen algorithm

The Kohonen algorithm  (Kohonen, 1995; Cottrell, Fort, 1987;
Cottrell, Fort, Pagès, 1994) is a well-known unsupervised learning
algorithm which produces a map composed by a fixed number of units. A
physical neighborhood relation between the units is defined and for each
unit i, Vr(i) represents the neighborhood with radius r centered at i.

Each unit is characterized by a parameter vector Wi of the same
dimension as the input space.

 After learning, each unit represents a group of individuals with
similar features (this group is named Voronoi region of the unit). The
correspondence between the features and the units (more or less)
respects the input space topology : similar features correspond to the
same unit or to neighboring units. The final map is said to be self
organized map which preserves the topology of the input space. The
learning algorithm takes the following form :

• at time 0, Wi(0) is randomly defined for each unit i;
• at time t, we present a vector x(t) randomly chosen among the

rows of the data matrix and we determine the winning unit i*,
which minimizes the Euclidean distance between x(t) and Wi(t);

• we then modify the Wi in order to move the weights of the
winning unit i* and its physical neighbors towards x(t), using the
following relations :
 

 [ ][ ]W W x W  for  i  Vr (i*)i (t+1) i (t) (t) (t) i (t) (t)= + × − ∈ε (1)

 W Wi (t+1) i (t)
= (2)

 where ε(t) is a small positive adaptation parameter, r(t) is the radius
of Vr(t) and ε(t) and r(t) are progressively decreased during the learning.

 The results have been obtained after 100 learning cycles (at each
one, we present all the individuals composing the data). The input space



dimension is 15. We have used a one-dimension map.
 While the asymptotic properties of this algorithm remain partly

unknown, some of its theoretical properties have been demonstrated
during the last 10 years. One of them is of particular interest as regards
this paper and concerns the density approximation property of this
algorithm. In (Pagès, 1993), the Kohonen algorithm terminating with a 0
neighbor at the end of learning is studied.  According to the comment at
the end of section 3, the convergence of this algorithm is thus equivalent
to the convergence of a classical VQ technique as "competitive learning".
The author shows that the units after VQ are a good discrete skeleton
for reconstructing the initial density f(x), provided that each unit is
weighted by the probability (estimated by the frequency) of its Voronoi
region.  In other terms, if y1, y2,…,yn are the units after learning, and C1,
C2,…,Cn the corresponding Voronoi regions, the following convergence
(in law) is guaranteed:
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 when n goes on to infinity, and δ yi

 is a Dirac function on yi. This is

equivalent to saying that the empirical measurement defined by units y1,
y2,…,yn, weighted by the probabilities of the associated Voronoi regions,
converges (in law) on the initial probability P.

 Provided that units are adequately weighted, this result shows that
it is possible to reconstruct the initial law, and the result is exact when
the number of units goes on to infinity.  Pagès also showed that the
speed of convergence is better than with data obtained by independent
random drawings.

 This remarkable theoretical property justifies the choice of the
Kohonen algorithm to quantify the distributions of interest rate
structures and interest rate shocks (see section 5) and largely explains
the compatibility of the generated scenarios with the historical data set
used.

 



 4 The data set

 To classify the observed shocks on the interest rate structure, we
used data from the US bonds market. Our data are daily interest rate
structures for maturity from 1 to 15 years. The interest rate for each
maturity has been calculated by JP Morgan from the prices of US T-Bills
and T-Bonds. The sample covers the period from 1/5/1987 to 5/10/1995,
altogether 2088 entries. Using these data, we calculate the shocks which
are the differences between the observed term structure at time t (given
that we have only 15 rates corresponding to maturity ranging from 1
year to 15 years) and time t−10 working days (time delay recommended
by the Basle Committee on Banking Supervision). Figure 1 shows the
evolution the short-rate (1-year) et the long-rate (15-year) during the
period 1987-1995. Using several other data sets, results presented in this
paper have been confirmed.
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 Fig. 1: Short-rate and long-rate evolution during the period 1987-1995 on the US
market.
 

 5 Using Monte-Carlo on a Kohonen Map

 5.1 Previous works

 The approach proposed in this paper is based on several previous
works.  The first work (Cottrell, de Bodt, Henrion, Grégoire, 1996a) was
oriented towards the classification of the observed shocks on the interest
rate structure. We used the Kohonen Algorithm and compared its



performances to the classical hierarchical clustering approach (HCA). To
compare the two algorithms, we used several statistics. First, for each
dimension (maturity), we compare the ratio of the intra-class sum of
squares to the total sum of squares and the classical Fisher statistic.
Then, to compare the clustering power of each approach with all sets of
maturities, we have used four multidimensional extensions of the Fisher
test : Wilk’s Lambda, Pillai’s Trace, Hotelling-Lawley Trace and Roy’s
Greatest Root. These preliminary results clearly show the power of the
Kohonen algorithm as compared to HCA.

 On the basis of these results, in (Cottrell, de Bodt, Henrion,
Grégoire, 1996b), we analyzed the information used by the Kohonen
algorithm to form clusters of interest rate structure shocks. Using a
canonical correlation analysis, we show that the level, spread and
curvature are the three variables most correlated with the unsupervised
classification produced.

 It also seems important to mention that the structural stability of
the data set have been tested and that, in all our analysis, we choose the
number of units of the Kohonen map by studying the decrease of the
intra-class sum of squares on the total sum of squares ratio as the
number of units increase.

 5.2 The relation between initial interest rate structure and interest rate
shocks

 A large number of term structure models are based on specific
assumptions about the stochastic process determining the state
variables, especially the instantaneous interest rate. Various empirical
studies (Chan et al. 1992 ; Dalquist 1996)  conclude that a class of
models seems to outperform other models. This class of models takes into
account the mean-reverting feature of the interest rates and the fact
that the variance in interest rate changes appears to be dependent on
the interest rate level. The method we have proposed in this article does
not impose a priori an analytical form of the process governing the
instantaneous interest rate. If there is a mean-reverting feature or a link
between the level of the interest rates and the variance, our approach
will take it into account. In fact, as we characterized the relation
between the class of shocks and the initial structure, we take into
account the magnitude of the shocks (variance) in respect to the initial
structure (conditional variance) and the lower (higher) probability of an
upper (downer) shock when the level of the initial structure is high



(mean-reverting). Moreover, as we do not impose the processes
governing the state variables, we hope to reproduce the statistical
properties of the historical evolution of the interest rate structure.

 To study the empirical relation between the initial interest rate
structure and the interest rate shocks, we proceed in three steps. First, a
clustering of the initial interest rate structure has been realized. A 9
unit one-dimensional Kohonen map has been used. Then, a clustering of
the shocks on the interest rate structure has been done, in this case
using a 30 unit one-dimensional Kohonen map. While it is behind the
scope of this paper to present in full detail those results, it is interesting
to mention the Fisher statistics obtained, for each maturity, on the
clustering of shocks (Table 1). These statistics confirm the highly
discriminate cluster formed by the Kohonen algorithm.

 
 

 

Dimension Fisher Dimension Fisher
1 898 8 2840
2 1579 9 2803
3 2099 10 2840
4 2472 11 2544
5 2853 12 2221
6 3161 13 1894
7 3038 14 1574

15 1279
 Tab. 1 : Fisher statistics for each maturity obtained after clustering by a 30 unit
one-dimensional Kohonen map.

 
 Analysis of the relation between the initial interest rate structure

and the shocks that apply to them has been conducted on this basis. To
understand this procedure, we have to remember that each shock to the
interest rate structure is related by its date to a specific initial interest
rate structure. In other words, a specific deformation of the interest rate
structure is obtained by the difference between the state of the interest
rate structure at a specific date and the state of the interest rate
structure 10 days later. It is therefore possible to identify the shock
subset associated with each of the 9 interest rate structure classes and to
calculate the conditional frequency distributions. We then test the
statistical independence between the 9 empirical conditional
distributions of shocks and the global population of shocks using a χ2

test. Results are shown in Table 2. All 9 tests are statistically significant.



In other words, this is equivalent to saying that the conditional
distributions of shocks are statically different from the distribution of
the global population of shocks, with a very high level of confidence. The
empirical relation between shocks and interest rate structure is
confirmed.

 

 

Initial interest rate classes Independence test
1 140
2 42.04
3 85.48
4 54.58
5 151.07
6 244.39
7 55.38
8 73.37
9 59.87

 Tab. 2 : χ2 tests between each of the nine conditional distributions of shocks and
the global population of shocks.

 

 5.3 Simulating interest rate structure evolution’s on a long term
horizon

 Using these empirical conditional distributions of frequencies, we
propose a Monte-Carlo procedure to simulate the interest rate structure
evolution. The procedure is the following :

• first, we randomly draw an initial interest rate structure.
• the winning unit of the Kohonen map associated with the

interest rate structure is then determined.
• using the conditional distribution of frequencies of the interest

rate shocks, we randomly draw a shock.
• we then apply the shock to the interest rate structure.
• the procedure is repeated 125 times to construct an interest rate

structure evolution on a five year horizon (125 times the 10 days
covered by the interest rate shock).

• for each simulation, we then repeat the procedure 1000 times to
build the distribution of probability of interest rate structures,
starting from the same initial interest structure.

Figure 3 and 4 respectively show the distribution of the short-rate



and the long-rate for three simulations. The first two have been realized
using the same interest rate initial shape (for which unit 6 is the
winning one). The third one has been done using an initial interest rate
structure attached to unit 1 (the only inverted interest rate structure
mean profile). Based on these figures we see that the procedure is stable
and that, on a five year basis, the initial interest rate structure mainly
influences the short rate level. We also see that, for all simulations, the
level of the short-rate and the long-rate are compatible with the
historical one. Figure 5 presents five interest rate structures obtained in
simulation 1, drawn from among the 1000 produced. We see that they
are well-shaped. This property has been verified in all the results.
Figure 6 presents, still in the case of simulation 1, one trajectory of the
short and the long rate over 5 years. They clearly represent possible
paths. While not presented here, we should also mention that in all
simulations and at all steps all forward interest rate are positive.

6 Future works

In this paper, we have described a method for generating different
scenarios of the evolution of the interest rate structure. The scenarios
reproduce the characteristics of the historical data and seem to be stable
over a long term horizon. To measure the interest rate risk of financial
institutions by the VaR numbers, we need to calculate the prices, at
some future date, of the securities whose payoff are dependent on the
interest rate process. The standard techniques for valuation of these
securities are, implicitly or explicitly, application of a risk-neutral
valuation principle. The compensation for risk is made explicitly by
adjusting the discount factors or implicitly when we impose the
martingale property on the simulated sample paths of the underlying
security price. Our future work will focuse on the valuation of the
contingent claims.
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Fig. 3 : The short rate distributions produced by simulation 1 and 2
(starting from the same initial interest rate structure) highlight the
stability of simulation procedure.

Long rate distribution
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Fig. 4 : The long-rate distributions produced by simulation 1 and 2
(starting from the same initial interest rate structure) highlight the
stability of simulation procedure.
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Fig. 5 : Five interest rate structures obtained in simulation 1,
randomly drawn among the 1000 produced.
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Fig. 6 : One trajectory of the short and long rate over 5 years,
chosen among the 1000 produced by simulation 1.
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