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Abstract

This paper is aimed to sharpen a weak invariance principle for stationary sequences
in Doukhan & Louhichi (1999). Our assumption is both beyond mixing and the
causal θ-weak dependence in Dedecker and Doukhan (2003); those authors obtained a
sharp result which improve on an optimal one in Doukhan et alii (1995) under strong
mixing. We prove this result and we also precise convergence rates under existence of
moments with order > 2 while Doukhan & Louhichi (1999) assume a moment of order
> 4. Analogously to those authors, we use a non-causal condition to deal with some
general classes of stationary and weakly dependent sequences. Beyond the previously
used η- and κ-weak dependence conditions, we introduce a mixed condition λ adapted
to consider Bernoulli shifts with dependent innovations, which look quite new.

1 Introduction and main results

Working with times series provide a huge amount of applications. Several ways of modeling
the weak dependence have already been worked out. One of the most popular is the notion
of mixing, see Doukhan (1994) for bibliography; this allows a very nice asymptotic theory
(see Rio, 2000). However, using mixing presents lots of restrictions. For example, Andrews
(1984) exhibits the simple counter-example of an auto-regressive process which does not
satisfy a mixing condition. Doukhan and Louhichi (1999) introduced several new weak
dependence conditions to solve those problems. The present work aims to provide a
sharper Donsker theorem under such conditions. Among the notions of weak dependence,
we consider separately causal and non causal conditions.

• On the one hand, causal Donsker’s theorem is discussed in Dedecker & Doukhan
(2003). Using arguments originated from martingale theory, those authors obtain
sharp results exhibiting moment assumptions with order 2 + ζ for arbitrarily small
ζ > 0.

• On the other hand, the case of non causal sequences yields other interesting models
such as the two sided linear sequence

Xt =
∞∑
−∞

ai ξt−i (1)

where summations run from −∞ to +∞, and the innovations (ξt)t∈Z form an iid
sequence. In this case, no martingale theory tool seems to be available, and Doukhan
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and Louhichi (1999) obtain Donsker type invariance principle under moment con-
ditions with order > 4. The result in [10] is clearly not optimal and the reason
of such assumptions is that the method of proof was based on the Bernstein blocks
technique and on a combinatorial moment inequality of order 4 which excludes lower
order moment assumptions.

In the present paper, we propose an alternative to such results for which this problem
is bypassed. We derive a moment inequality of order 2 + δ, where 0 < δ < ζ, for
sums by using interpolation and truncation arguments. Our moment inequality writes
‖X1 + · · · + Xn‖2+δ ≤ c

√
n. This expression allows to derive both the tightness in the

Donsker invariance principle (see Billingsley, 1968) and a version of the central limit the-
orem under weak dependence conditions and lower order moments assumptions. We also
introduce a composite weak dependence condition aimed to include new models such as
the previous two sided linear models but where now the sequence of innovations, instead
of being independent, may now be some weakly dependent process. The method used
here, originated from Ibragimov (1975) was recently used by Bulinski and Sashkin (2005)
for κ′-weakly dependent random fields (see the forthcoming definition).

Definition 1 A vector valued process (Xn)n∈Z with values in Rd, endowed with some
norm ‖ · ‖, is said to be (ε, ψ)-weakly dependent if there exists a sequence εr ↓ 0 (as r ↑ ∞)
and a function ψ : N2 × (R+)2 → R+ such that:

|Cov(f(Xs1 , . . . , Xsu), g(Xt1 , . . . , Xtv)| ≤ ψ(u, v,Lip f,Lip g)εr,

for any r ≥ 0 and any (u + v)-tuples such that s1 ≤ · · · ≤ su ≤ su + r ≤ t1 ≤ · · · ≤ tv,
where the real valued functions f, g are defined respectively on

(
Rd
)u and

(
Rd
)v, and they

satisfy ‖f‖∞, ‖g‖∞ ≤ 1 and Lip f + Lip g <∞ where we set

Lip f = sup
(x1,...,xu) 6=(y1,...,yu)

|f(x1, . . . , xu)− f(y1, . . . , yu)|
‖x1 − y1‖+ · · ·+ ‖xu − yu‖

Specific interesting functions ψ are:

• κ-weak dependence for which ψ(u, v, a, b) = uvab, in this case we simply denote εr
as κr,

• κ′ (causal) weak dependence for which ψ(u, v, a, b) = vab, in this case we simply
denote εr as κ′r; this is the causal counterpart of κ coefficients which we recall only
for completeness,

• η-weak dependence, ψ(u, v, a, b) = ua+ vb, in this case we write εr = ηr for short,

• θ-weak dependence is a causal dependence which refers to ψ(u, v, a, b) = vb, in this
case we simply denote εr = θr (see Dedecker & Doukhan, 2003); this is the causal
counterpart of η coefficients which we recall only for completeness,

• λ-weak dependence ψ(u, v, a, b) = uvab+ ua+ vb, in this case we write εr = λr.
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Remarks.

• Besides the fact that it includes η- and κ-weak dependence, λ-weak dependence
will be proved to be convenient, for example, for Bernoulli shifts with associated
innovations (see Theorem 3 below).

• If now the function f, g take their values in C, the previous inequalities remain
true by replacing εr by εr/2. A useful case of such complex valued functions is
f(x1, . . . , xu) = exp (it · (x1 + · · ·+ xu)) for each t ∈ Rd, u ∈ N∗ and x1, . . . , xu ∈ Rd

(see section 4.1). This indeed corresponds to the characteristic function adapted to
derive convergence in distribution through Paul Lévy theorem.

In all the paper we shall consider a centered and stationary real valued sequence (Xn)n∈Z
such that

µ = EXm
0 <∞, for a real number m = 2 + ζ > 2. (2)

We also set

σ2 =
∑
k∈Z

Cov(X0, Xk) =
∑
k∈Z

EX0Xk,

W denotes the standard Brownian motion and Wn(t) = 1√
n

∑nt
i=1Xi for t ∈ [0; 1] and

n ≥ 1. We now present our main results, they provide a Donsker type weak invariance
principle.

Theorem 1 (κ-dependence) Assume that the κ-weakly dependent stationary process
satisfies (2) and κr = O(r−κ) (as r ↑ ∞) for κ > 2 + 1

ζ then the previous expression
σ2 ≥ 0 is well defined and, moreover:

Wn(t) →n→∞ σW (t), in distribution in the Skohorod space D([0, 1]).

Remark. Under the more restrictive κ′ condition, Bulinski & Shashkin (2005) obtain
invariance principles with the sharper assumption κ′ > 1+1/ζ. The difference of 1 between
both conditions is natural since it may be proved for κ′-weakly dependent sequences that
κ′r ≥

∑
s≥r κs. This simple bound, checked from the definitions, explains the previous

loss.
The following result relaxes the previous dependence assumptions to the coast of a

faster decay for the dependence coefficients.

Theorem 2 (λ-dependence) Assume that the λ-weakly dependent stationary process
satisfies (2) and λr = O(r−λ) (as r ↑ ∞) for λ > 4 + 2

ζ then the previous expression
σ2 ≥ 0 is well defined and, moreover:

Wn(t) →n→∞ σW (t), in distribution in the Skohorod space D([0, 1]).

We do not achieve better results for η (or θ-) weak dependence cases than the one
for λ−dependence. This last coefficient is very useful to study Bernoulli shifts Xn =
H(ξn−j , j ∈ Z) with weakly dependent innovation process (ξi)i (see section 2.4 for more
details).

We restrict to such H : RZ → R satisfying:
for each s ∈ Z, if x, y ∈ RZ satisfy xi = yi for each index i 6= s

|H(x)−H(y)| ≤ bs(max
j 6=s

|xj |l ∨ 1)|xs − ys|. (3)
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Theorem 3 Let (ξi)i be a stationary λ-weakly dependent process (with dependence coeffi-
cients denoted λξ,r) and H : RZ → R satisfies the condition (3) for some m > 2 such that
lm ≤ m′ − 1 with E|ξ0|m

′
< ∞, and some sequence bi ≥ 0 such that

∑
i |i|bi < ∞. Then

Xn = H(ξn−i, i ∈ Z) satisfies the weak invariance principle in the following cases:

• Geometric case: br = O
(
e−rb

)
and λξ,r = O (e−rc).

• Mixed case: br = O
(
e−rb

)
and λξ,r = O (r−c) with c > 4 + 2/(2−m).

• Riemanian case: If br = O
(
r−b
)

for some b > 2 and λξ,r = O (r−c) with

c >
(10− 4m)b(m′ − 1)

(2−m)(b− 2)(m′ − 1− l)
.

The constants b > 0 and c > 0 obtained are different for each case.

This theorem is useful to derive the weak invariance principle in many cases. Section 2.4
will provide such examples, but the forthcoming one is already of interest:

Example 1
Consider the two sided sequence Xt =

∑∞
−∞ ai ξt−i with LARCH(∞) innovations:

ξt = ξ̃t

a′ + ∞∑
j=1

a′jξt−j

 ,

where the process (ξ̃i)i is iid. Under Riemanian decays (ar = O(r−a) and a′r = O(r−a′)),
we derive from Theorem 3 the condition to obtain the weak invariance principle on the
process (Xt)t as:

a′ >
(10− 4m)a(m′ − 1)

(2−m)(a− 2)(m′ − 1− l)
+ 1.

Remarks.

• The technique of the proofs is based on Lindeberg method and we prove in fact
that |E (f(Sn/

√
n)− f(σN))| ≤ Cn−c∗ for constants c∗, C > 0 and (f is here the

characteristic function) depending only on the parameters ζ and κ or λ respectively
and where c∗ < 1

2 (see Proposition 2 section 4.2 for more details). When κ or λ
tends to infinity, we have c∗ = ζ/(4 + ζ). For ζ ≥ 2 and κ or λ tends to infinity, we
notice that c∗ → 1

3 .

• Using a smoothing lemma also yields an analogue bound for the Levy distance in
the real case (d = 1):

sup
t∈R

∣∣∣∣P( 1√
n
Sn ≤ t

)
− P (σN ≤ t)

∣∣∣∣ ≤ Cn−c′ .

A first and easy way to control c′ is to set c′ = c∗/4 but the corresponding rate is
really a bad one. Petrov (1995) obtains the exponent 1

2 in the iid case and Rio (2000)
reaches the exponent 1

3 for strongly mixing sequences. In proposition 3 section 4.2,
we achieve c′ = c∗/3. Analogous non optimal convergence rates are also proved for
the case of weakly dependent random fields in [9].
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The paper is organized as follows. In the forthcoming section 2, we precise examples of
models satisfying our assumptions. Besides more standard examples, we shall focus on
examples of λ-weakly dependent sequences. The other sections are devoted to the proofs.
We first derive conditions ensuring the convergence of the series σ2 and we then obtain a
bound for the moment of order (2+ δ)-th of a sum (of an independent interest), in section
3. The proofs are collected in section 4. The standard Lindeberg method with Bernstein
blocks is developed in § 4.1. Rates of convergence for the Donsker’s theorems are obtained
in § 4.2.

2 Examples

Examples are classified by increasing complexity. In each cases, we discuss both the
existence of a moment of order m > 2 and the weakly dependence properties. We first
recall situations of Gaussian and associated sequences which satisfy a κ type dependence
condition. After this we recall the properties of η-dependence for the stable Markov chains
or the Bernoulli shift sequences. Those conditions are essentially already considered in
Doukhan & Louhichi (1999); however some examples are updated, using for instance a
work by Doukhan, Teyssière and Winant (2005) who consider the example of LARCH(∞)
vector models. A final subsection introduces new models of Bernoulli shifts with dependent
innovations. Their properties of weak dependence are also described; to our opinion, such
models already justify the introduction of λ−weak dependence.

2.1 Associated and Gaussian models

The κ-weak dependence condition is known to hold for associated or Gaussian sequences.
Recall that a process is associated if Cov(f(X(n)), g(X(n))) ≥ 0 for any coordinatewise
non-decreasing function f, g : Rn → R such that the previous covariance make sense with
X(n) = (X1, . . . , Xn). In both cases this condition will hold with

κr = sup
j≥r

|Cov(X0, Xj)|

Notice the absolute values are needed only in the second case since for associated processes
these covariances are nonnegative if they are finite. Independent sequences as well are as-
sociated and Pitt (1982) proves that a Gaussian process with nonnegative covariances is
also associated. Finally, we quote that non-decreasing functions of associated sequences re-
main associated. This is a standard way to construct associated models from iid sequences
(see e.g. Louhichi, 2001).

2.2 Stable Markov processes

This section is devoted to the study of the properties of stationary sequences satisfying a
recurrence equation

Xn = F (Xn−1, . . . , Xn−d, ξn)

where the sequence (ξn) is iid. In this case Yn = (Xn, . . . , Xn−d+1) is a Markov chain such
that Yn = M(Yn−1, ξn) with

M(x1, . . . , xd, ξ) = (F (x1, . . . , xd, ξ), x1, . . . , xd−1).
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Duflo (1996) proves in Theorem 1.IV.24 the stationarity of (Xn)n in Lm for m > 2 as soon
as ‖F (0, ξ)‖m < ∞ and there exist a norm ‖ · ‖ on Rd and a real 0 ≤ a < 1 such that
‖F (x, ξ)− F (y, ξ)‖m ≤ a‖x− y‖. In this setting it is simple to derive that θ-dependence
holds with θr = O(ar) (as r ↑ ∞) for the following examples:

• Functional AR models: Xt = r(Xt−1, . . . , Xt−d)+ξt if E|ξ0|m <∞ and |r(u1, . . . , ud)−
r(v1, . . . , vd)|m ≤

∑d
i=1 ai|ui − vi| for some a1, . . . , ad ≥ 0 with

∑d
i=1 ai < 1.

• ARCH-type processes. Here d = 1. LetM(u, z) = A(u)+B(u)z for suitable Lipschitz
functions A(u), B(u), u ∈ R. The corresponding iterative model satisfies the previous
relation if

a = Lip (A) + ‖ξ0‖mLip (B) < 1.

Examples of such Markov processes are nonlinear AR(1) processes (B ≡ 1), sto-
chastic volatility models (A ≡ 0); classical ARCH(1) models (A(u) = αu, ,B(u) =√
β + γu2 with α, β, γ ≥ 0).

• Branching type models. Here d = 1, and D ≥ 2, set ξt =
(
ξ
(1)
t , . . . , ξ

(D)
t

)
. Let now

A1(u), . . . , AD(u), u ∈ R be Lipschitz functions, and let

M
(
u,
(
z(1), . . . , z(D)

))
=

D∑
j=1

Aj(u)z(j), (u, z(1), . . . , z(D)) ∈ RD+1.

For such kernels, we also require a =
∑D

j=1 Lip (Aj)E|ξ(j)0 |m < 1.

The next section is devoted to non necessarily Markov models.

2.3 Bernoulli shifts

Let H : RZ → Rd be a measurable function. If the sequence (ξn)n∈Z is independent and
identically distributed on the real line, a Bernoulli shift with innovation process (ξn)n∈Z
is defined as

Xn = H ((ξn−i)i∈Z) , n ∈ Z.

The most simple case of infinitely dependent Bernoulli shift is the infinite two sided moving
average process (1). Bernoulli shifts are η−weakly dependent (see Doukhan & Louhichi
(1999)) with ηr ≤ 2δ[r/2] where (‖ · ‖ is a norm on Rd):

E
∥∥H (ξj , j ∈ Z)−H

(
ξj11|j|≤r, j ∈ Z

)∥∥ ≤ δr. (4)

In order to apply our weak invariance principle, we shall need an additional moment
assumption with order m > 2 which is not a direct consequence of this definition. This
condition is checked in the forthcoming examples.

2.3.1 Chaotic Volterra models

A Volterra process is a stationary process defined through a convergent Volterra expansion

Xt = v0 +
∞∑

k=1

Vk;t, where Vk;t =
∑

−∞<i1<···<ik<∞
ak;i1,...,ikξt−i1 · · · ξt−k
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where v0 denotes a constant and (ak;i1,...,ik)(i1,...,ik)∈Zk are real numbers for each k ≥ 1.
This expression converges in Lm for m ≥ 1, provided that E|ξ0|m < ∞ and the weights
satisfy

∑∞
k=1

∑
i1<···<ik

|ak;i1,...,ik | <∞.
More general Volterra processes are also defined by expansions (possibly with repeti-

tions):

Xt = v0 +
∞∑

k=1

Vk;t, where Vk;t =
∑

(i1,...,ik)∈Zk

ak;i1,...,ikξt−i1 · · · ξt−k

where v0 denotes a constant and (ak;i1,...,ik)(i1,...,ik)∈Zk are real numbers for each k ≥ 1. This
more involved expression converges in Lm as soon as

∑∞
k=1 E|ξ0|mk

∑
i1<···<ik

|ak;i1,...,ik |
m <

∞. Those models are η-dependent since δs is now the tail of the previous series.
The forthcoming examples are natural models for which such expansions may be

proved.

2.3.2 LARCH(∞) models

A vast literature is devoted to the study of conditionally heteroskedastic models. A simple
equation in terms of a vector valued process allows a unified treatment of those models,
see [13]. Let (ξt)t∈Z be an iid sequence of random d×D-matrices, (aj)j∈N∗ be a sequence
of D × d matrices, and a be a vector in RD. A vector valued LARCH(∞) model is a
solution of the recurrence equation

Xt = ξt

a+
∞∑

j=1

ajXt−j

 (5)

We provide below sufficient conditions for the following chaotic expansion

Xt = ξt

a+
∞∑

k=1

∑
j1,...,jk≥1

aj1ξt−j1aj2 · · · ajk
ξt−j1−···−jk

a

 (6)

Such LARCH(∞) models include a large variety of models, as

• Standard LARCH(∞) models, correspond to the case of real valued Xt and aj .

• Bilinear model Xt = ζt

(
α+

∞∑
j=1

αjXt−j

)
+ β +

∞∑
j=1

βjXt−j where the variables are

real valued and ζt is the innovation. For this, we set

ξt =
(
ζt
1

)
, a =

(
α
β

)
and aj =

(
αj

βj

)
Expansion (6) coincides with the chaotic expansion in [15].

• GARCH(p, q) models,{
rt = σtεt
σ2

t =
∑p

j=1 βjσ
2
t−j + γ +

∑q
j=1 γjr

2
t−j

where γ > 0, γi ≥ 0, βi ≥ 0 (and the variables ε are centered at expectation); for
this, the previous bilinear model is written with α0 = γ0

1−
P

βi
et
∑
αiz

i =
P

γiz
i

1−
P

βizi

(see [15]).
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• ARCH(∞) processes are given by equations,
rt = σtεt

σ2
t = β0 +

∞∑
j=1

βjr
2
t−j

One sets ξt =
(
εt 1

)
, a =

(
κβ0

λ1β0

)
, aj =

(
κβj

λ1βj

)
with λ1 = E(ε20), κ

2 =

Var (ε20).

Endow the sets of matrices with a norm ‖ · ‖ of algebra, such as any norm for linear
applications. Assume that Λ = ‖ξ0‖m

∑
j≥1 ‖aj‖ < 1 then one stationary of solution of

eqn. (5) in Lm is given by (6), it is essentially the only one (see Doukhan, Teyssière and
Winant, 2005). The solution (6) of eqn. (5) is θ−weakly dependent with

θr =

(
E‖ξ0‖

r−1∑
k=1

kΛk−1A
( r
k

)
+

Λr

1− Λ

)
E‖ξ0‖‖a‖,

where A(x) =
∑

j≥x ‖aj‖. There exists some constant K > 0 and b, C > 0 such that

θr ≤

{
K (log(r))b∨1

rb , under Riemaniann decay A(x) ≤ Cx−b,

K(q ∨ Λ)
√

r, under geometric decay A(x) ≤ Cqx.

2.3.3 Non-causal LARCH(∞) model

Now aj is defined for j 6= 0 and the corresponding recurrence equation involves a sum-
mation for such j 6= 0. Doukhan, Teyssière and Winant (2005) prove the same results of
existence as for the previous causal case (only replace summation for j > 0 by summation
for j 6= 0) and the dependence is now of the η type with

ηr =

‖ξ0‖∞ ∑
0≤2k<r

kΛk−1A
( r

2k

)
+

Λr/2

1− Λ

E‖ξ0‖‖a‖

where now
A(x) =

∑
|j|≥x

‖aj‖, Λ = ‖ξ0‖∞
∑
j≥1

‖aj‖ < 1.

Notice that a very restrictive new assumption is that innovations are uniformly bounded.
The forthcoming example relaxes the assumption of independence for the innovations.

2.4 Bernoulli shifts with dependent innovations

Let us note (ξi)i the weakly dependent innovation process. We restrict to the case d = 1
in this section. Let H : RZ → R be a measurable function and Xn = H(ξn−i, i ∈ Z).
Such models are proved to exhibit either λ- or η-weak dependence properties. Because
Bernoulli shifts of κ-weak dependent innovations are neither κ- nor η-weakly dependent,
the κ case is here included in the λ one. We assume that E|ξ0|m

′
< +∞ and we set here

‖x‖ = supi∈Z |xi|. In order to study weak dependence properties of Xn, we assume that
H satisfy condition (3), this is a stronger assumption that the one used in the case of
independent innovations (see eqn. (4)). The following lemma both proves the existence
and bounds the weak dependence properties of such models:
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Lemma 1 Let Xn = H(ξn−i, i ∈ Z) be a Bernoulli shift such that H : RZ → R satisfies
the condition (3) with lm+ 1 < m′ for some m > 2, with E|ξ0|m

′
<∞ and some sequence

bs ≥ 0 such that
∑

s |s|bs <∞. Then,

• the process Xn = H(ξn−i, i ∈ Z) is well defined in Lm: this is a strongly stationary
process.

• if the innovation process (ξi)i∈Z is λ-weakly dependent (the weak dependence coeffi-
cients are denoted λξ,r), then Xn is λ-weakly dependent with

λk = c inf
r≤[k/2]

∑
i≥r

|i|bi

 ∨

(
(2r + 1)2λ

m′−1−l
m′−1

ξ,k−2r

)
.

• if the innovation process (ξi)i∈Z is η-weakly dependent (the weak dependence coeffi-
cients are denoted ηξ,r) then Xn is η-weakly dependent and there exists a constant
c > 0 such that

ηk = c inf
r≤[k/2]

∑
i≥r

|i|bi

 ∨

(
(2r + 1)1+

l
m′−1 η

m′−2
m′−1

ξ,k−2r

)
.

The proof is given in section 4.3. Specifying the decay rates, this lemma leads to a useful
proposition:

Proposition 1 For standard decays of the previous sequences, this is easy to get the
following explicit bounds. Here λ > 0 and η > 0 are constants which can differ in each
case.

• If bi = O
(
i−b
)

for some b > 2 and λξ,i = O
(
i−λ
)
, resp. ηξ,i = O (i−η) (as i ↑

∞) then from a simple calculation, we optimize both terms in order to prove that

λk = O
(
k
−λ(1− 2

b )m′−1−l
m′−1

)
, resp. ηk = O

(
k
−η

(b−2)(m′−2)

(b−1)(m′−1)−l

)
. Note that in the case

m′ = ∞ this exponent may be arbitrarily close to λ for large values of b > 0. This
exponent may thus take all possible values between 0 and λ.

• If bi = O
(
e−ib

)
for some b > 0 and λξ,i = O

(
e−iλ

)
, resp. ηξ,i = O

(
e−iη

)
(as i ↑ ∞)

we have λk = O
(
k2e

−λk
b(m′−1−l)

b(m′−1)+2η(m′−1−l)

)
, resp. ηk = O

(
k

m′−1−l
m′−1 e

−ηk
b(m′−2)

b(m′−1)+2η(m′−2)

)
.

The geometric decays for both (bi)i and coefficients of the innovations ensure the geo-
metric decay of the weak dependence coefficients associated to such a Bernoulli shift.

• If we consider now a common situation where the Bernoulli shift as geometric decay,
say bi = O

(
e−ib

)
and λξ,i = O

(
i−λ
)
, resp. ηξ,i = O (i−η) (as i ↑ ∞) we find λk =

O
(

(log k)2k−λ m′−1−l
m′−1

)
, resp. ηk = O

(
(log k)1+

l
m′−1k

−η m′−2
m′−1

)
. If m′ = ∞ this

thus means that we only loose at most a factor log2 k with respect to the dependence
coefficients of the input dependent series (ξi)i.

After the simplest example 1, we now precise more involved examples of Bernoulli shifts
with dependent innovations:
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Example 2 (Volterra models with dependent inputs)
Consider the function H defined by:

H(x) =
K∑

k=0

∑
j1,...,jk

a
(k)
j1,...,jk

xj1 · · ·xjk
,

then if x, y are as in eqn. (3):

H(x)−H(y) =
K∑

k=1

k∑
u=1

∑
j1, . . . , ju−1
ju+1, . . . , jk

a
(k)
j1,...,ju−1,s,ju+1,...,jk

xj1 · · ·xju−1(xs − ys)xju+1 · · ·xjk
.

¿From the triangular inequality we thus derive that suitable constants may be written as
l = K − 1 and

bs =
K∑

k=1

∑(k,s)
|a(k)

j1,...,jk
|

where
∑(k,s) stands for the sums over all indices in Zk where one of the indices j1, . . . , jk

takes the value s and

L ≡
K∑

k=0

∑
j1,...,jk

∣∣∣a(k)
j1,...,jk

∣∣∣ .
Example 3 (Uniform Lipschitz Bernoulli shifts)

Assume that condition (3) holds with l = 0, then the previous result still hold. An
example of such a situation is the case of LARCH(∞) non-causal processes with bounded
(m′ = +∞) and dependent stationary innovations.

3 Moments inequalities

Our proof for central limit theorems is based on a truncation method. For a truncation
level T ≥ 1 we shall denote Xk = fT (Xk)−EfT (Xk) with fT (X) = X ∨ (−T )∧T . Let us
simply remark that Xk has moments of any orders because it is bounded. Furthermore,
for any a ≤ m, we control the difference E|fT (X0)−X0|a by using Markov inequality:

E|fT (X0)−X0|a ≤ E|X0|a11{|X0|≥T} ≤ µT a−m,

thus Jensen inequality yields

‖X0 −X0‖a ≤ 2µ
1
aT 1−m

a . (7)

With this truncation, we are now in position to control both the limiting variance and the
higher order moments.

9



3.1 Variances

Lemma 2 (Variances) If one of the following conditions holds then the series σ2 is
convergent

∞∑
k=0

κk < ∞ (8)

∞∑
k=0

λ
m−2
m−1

k < ∞ (9)

Proof. Using the fact that X0 = gT (X0) is a function of X0 with Lip gT = 1, ‖gT ‖∞ ≤ 2T
we derive

|Cov(X0, Xk)| ≤ κk or 4Tλk, respectively (10)

In the κ dependence case, truncation can thus be omitted and

|Cov(X0, Xk)| ≤ κk (11)

we thus only consider λ dependence below; develop:

Cov(X0, Xk) = Cov(X0, Xk) + Cov(X0 −X0, Xk) + Cov(X0, Xk −Xk)

and using a truncation T to be determined we use the two previous bounds (7) and (10)
with Hölder inequality with the exponents 1

a + 4
m = 1 to derive

|Cov(X0, Xk)| ≤ 4Tλk + 2‖X0‖m‖X0 −X0‖a

≤ 4Tλk + 4µ1/a+1/mT 1−m/a

≤ 4(Tλk + µT 2−m).

Note that we used the relation 1 −m/a = 2 −m. Thus using the truncation such that
T 1+ζ = µ

λk
yields the bound

|Cov(X0, Xk)| ≤ 8µ
1

ζ+1λ
ζ

ζ+1

k = 8µ
1

m−1λ
m−2
m−1

k . (12)

3.2 A (2 + δ)-order moment bound

Lemma 3 Assume that the stationary and centered process (Xi)i∈Z satisfies E|X0|2+ζ <
∞, and it is either κ-weakly dependent with κr = O (r−κ) or λ-weakly dependent with
λr = O

(
r−λ
)
. If either κ > 2 + 1

ζ , or λ > 4 + 2
ζ , then for all δ ∈]0, A ∧ B ∧ 1[ (where A

and B are constants smaller than ζ and only depending of ζ and respectively κ or λ (see
eqns. (16) and (17)), there exist C > 0 such that:

‖Sn‖∆ ≤ C
√
n, where ∆ = 2 + δ.

Remarks.

• The constant C satisfies C >

(
5

2δ/2 − 1

)1/∆∑
k∈Z

|Cov(X0, Xk)|.Under the conditions

of this lemma, the lemma 2 entails

c ≡
∑
k∈Z

|Cov(X0, Xk)| <∞.
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• The result is sketched from Bulinski and Sashkin (2005); notice, however that their
condition of dependence is of a causal nature while our is not which explains a loss
with respect to the exponents λ and κ. In their κ′−weak dependence setting the best
possible value of the exponent is 1 while this is 2 here; a remark after the theorem
explains this difference.

Proof of lemma 3. Analogously to Bulinski and Sashkin (2005), who extend Ibragimov
(1979)’s proof to the case of random fields, we proceed by recurrence on k for n ≤ 2k to
prove the property:

‖1 + |Sn|‖∆ ≤ C
√
n. (13)

We then assume (13) for all n ≤ 2K−1. We noteN = 2K and we want to bound ‖1+|SN |‖∆.
We divide the sum SN in three blocks, the two first with the same size n ≤ 2K−1 are
denoted A and B, and the third V placed between the two first has the cardinal q < n.
We then have ‖1+ |SN |‖∆ ≤ ‖1+ |A|+ |B|‖∆ +‖V ‖∆. The term ‖V ‖∆ is directly bounded
by ‖1 + |V |‖∆ and the recurrence assumption, i.e. C

√
q. If q = N b with b < 1, this term

is of a strictly smaller order than
√
N . For ‖1 + |A|+ |B|‖∆, we have:

E(1 + |A|+ |B|)∆ ≤ E(1 + |A|+ |B|)2(1 + |A|+ |B|)δ,

≤ E(1 + 2|A|+ 2|B|+ (|A|+ |B|)2(1 + |A|+ |B|)δ.

An expansion yields the terms:

• E(1 + |A|+ |B|)δ ≤ 1 + |A|δ2 + |B|δ2 ≤ 1 + 2cδ(
√
n)δ,

• E|A|(1 + |A|+ |B|)δ ≤ E|A|((1 + |B|)δ + |A|δ) ≤ E|A|(1 + |B|)δ + E|A|1+δ. The term
E|A|1+δ is bounded by ‖A‖1+δ

2 and then c1+δ(
√
n)1+δ. The term E|A|(1 + |B|)δ is

bounded using Hölder ‖A‖1+δ/2‖1+ |B|‖δ
∆ and then is at least of order cCδ(

√
n)1+δ.

• We have the analogous phenomenon if B is considered in place of A.

• E(|A|+ |B|)2(1 + |A|+ |B|)δ. For this term, we use the elementary inequality from
Bulinski & Sashkin:

E(|A|+ |B|)2(1 + |A|+ |B|)δ ≤ E|A|∆ + E|B|∆ + 5(EA2(1 + |B|)δ + EB2(1 + |A|)δ).

Using (13), the term E|A|∆ is bounded by C∆(
√
n)∆. The second term is analogous.

The third is treated with a particular care below.

We now want to control EA2(1 + |B|)δ and the analogous with B. For this, we use the
weak dependence. We thus have to truncate the variables. Denote by X the variable
X ∨ T ∧ T for a real T that will determined later. We also set A and B for the analogue
sums of the truncated variables Xi. Remarking that |B| − |B| ≥ 0, we have:

E|A|2(1 + |B|)δ ≤ EA2(|B| − |B|)δ + E(A2 −A
2)(1 + |B|)δ + EA2(1 + |B|)δ.

We first control EA2(|B| − |B|)δ. Set m = 2 + ζ, then using Hölder inequality with
2/m+ 1/m′ = 1 yields:

EA2(|B| − |B|)δ ≤ ‖A‖2
m‖(|B| − ‖B|)δ‖m′

11



‖A‖∆ is bounded using (13) and we remark that:

(|B| − |B|)δm′ ≤ (|B| − |B|11{∀i,|Xi|≤T})
δm′ ≤ |B|δm′

11{∃i,|Xi|>T} ≤ |B|δm′
11|B|>T .

We then bound 11|B|>T ≤ (|B|/T )α with α = m− δm′. Then

E||B| − |B||δm′ ≤ E|B|mT δm′−m.

Then, by convexity and stationarity, we have E|B|m ≤ nmE|X0|m. Then:

EA2(|B| − |B|)δ � n2+m/m′
T δ−m/m′

.

Finally, remarking that m/m′ = m− 2, we obtain:

EA2(|B| − |B|)δ � nmT∆−m.

We obtain the same bound for the second term:

E(A2 −A
2)(1 + |B|)δ � nmT∆−m.

For the third term, we introduce a covariance term:

EA2(1 + |B|)δ ≤ Cov(A2
, (1 + |B|)δ) + EA2E(1 + |B|)δ.

The last term is bounded with |A|22|B|δ2 ≤ c∆
√
n

∆. The covariance is bounded above by
using weak-dependence:

• in the κ-dependent case: n2Tκq,

• in the λ-dependent case: n3T 2λq.

We then choose either the truncation Tm−δ−1 = nm−2/κq or Tm−δ = nm−3/λq. Now the
three terms of the decomposition have the same order:

E|A|2(1 + |B|)δ �
(
n3m−2∆κm−∆

q

)1/(m−δ−1)
under κ-dependence,

E|A|2(1 + |B|)δ �
(
n5m−3∆λm−∆

q

)1/(m−δ)
under λ-dependence.

Set q = N b, we note that n ≤ N/2 and this term has order N
3m−2∆+bκ(∆−m)

m−δ−1 under κ-weak

dependence and the order N
5m−3∆+bλ(∆−m)

m−δ under λ-weak dependence. Those terms are
thus negligible with respect to N∆/2 if:

κ >
3m− 2∆−∆/2(m− δ − 1)

b(m−∆)
, under κ-dependence, (14)

λ >
5m− 3∆−∆/2(m− δ)

b(m−∆)
, under λ-dependence. (15)

Finally, using this assumption, b < 1 and n ≤ N/2 we derive the bound for some suitable
constants a1, a2 > 0:

E(1 + |SN |)∆ ≤
(
2−δ/2C∆ + 5 · 2−δ/2c∆ + a1N

−a2

)(√
N
)∆

.
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Using the relation between C and c, we conclude that (13) is also true at the step N if the

constant C satisfies 2−δ/2C∆ + 5 · 2−δ/2c∆ + a1N
−a2 ≤ C∆. Choose C >

(
5c∆+a12δ/2

2δ/2−1

)1/∆

with c =
∑

k∈Z |Cov(X0, Xk)|, then the previous relation holds.
Finally, we use eqns. (14) and (15) to derive a condition on δ. In the case of κ-weak
dependence, we rewrite inequality (14) as:

0 > δ2 + δ(2κ− 3− ζ)− κζ + 2ζ + 1.

It leads to the following condition on λ:

δ <

√
(2κ− 3− ζ)2 + 4(κζ − 2ζ − 1) + ζ + 3− 2κ

2
= A. (16)

We do the same in the case of the λ-weak dependence:

δ <

√
(2λ− 6− ζ)2 + 4(λζ − 4ζ − 2) + ζ + 6− 2λ

2
= B. (17)

Remark: those bounds are always smaller than ζ. �

4 Proof of the main results

In this section we first prove the central limit corresponding to the convergence Wn(1) →
W (1) in the theorems 1 and 2, then we give rates for this central limit results. The weak
invariance principle is obtained in a standard way from such central limit theorems and
tightness which follows from lemma 1, by using the classical Kolmogorov Centsov tightness
criterion, see Billingsly (1968).

In the last subsection, we prove the lemma 3 which states the properties of our (new)
Bernoulli shifts with dependent inputs.

4.1 Proof of Theorems 1 & 2

Set S = 1√
n
Sn and consider p = p(n) and q = q(n) such that

lim
n→∞

1
q(n)

= lim
n→∞

q(n)
p(n)

= lim
n→∞

p(n)
n

= 0

and k = k(n) =
[

n
p(n)+q(n)

]
Z =

1√
n

(U1 + · · ·+ Uk) , with Uj =
∑
i∈Bj

Xi

where Bj =](p+ q)(j − 1), (p+ q)(j − 1) + p] ∩N is a subset of p successive integers from
{1, . . . , n} such that, for j 6= j′, Bj and Bj′ are at least distant of q = q(n). We note B′

j

the block between Bj and Bj+1 and Vj =
∑

i∈Bj
Xi. Vk is the last block of Xi between

the end of Bk and n. Furthermore, set σ2
p = Var (U1)/p, we let

Y =
V ′

1 + · · ·+ V ′
k√

n
, V ′

j ∼ N (0, pσ2
p)

13



where the Gaussian variables Vj are independent and independent of the sequence (Xn)n∈Z.
We also consider a sequence U∗

1 , . . . , U
∗
k of independent random variables with the same

distribution as U1 and we set Z∗ = 1√
n

(U∗
1 + · · ·+ U∗

k ). We fix t ∈ Rd and we define

f : Rd → C with f(x) = exp {it · x}. Then:

Ef(S)− f(σN) = Ef(S)− f(Z) + Ef(Z)− f(Z∗) + f(Z∗)− f(Y ) + Ef(Y )− f(σN)

Lindeberg method will prove that this expression converges to 0 as n → ∞. The first
and the last term in this inequality are referred to as auxiliary terms in this Bernstein-
Lindeberg method. They come from the replaced of the individual initial - non-Gaussian
and Gaussian respectively - random variables. The second term is analogue to that ob-
tained with decoupling and turns the proof of the central limit theorem to the independent
case. The third term is referred to as the main term and following the proof under indepen-
dence it will be bounded above by using a Taylor expansion. Because of the dependence
structure, in the corresponding bounds, some additional covariance terms will appear.
The following subsections are thus organized to following this scheme: we first consider
the auxiliary terms and the main terms are then decomposed by the usual Lindeberg
method and the corresponding terms coming from the dependence or the usual remainder
terms (standard for the independent case) are considered in separated subsections. A last
subsection makes use of those individual calculations to derive the central limit theorem.

4.1.1 Auxiliary terms

Using Taylor expansions up to the second order, we bound the auxiliary terms:

|Ef(S)− f(Z)| ≤ ‖f ′′‖2
∞

2
E|S − Z|2 and,

|Ef(Y )− f(σN)| ≤ ‖f ′′‖2
∞

2
E|Y − σN |2

Firstly:

E|Z − S|2 � E (V1 + . . .+ Vk)
2

n

Note that the set under the sums of Xi in V1 + . . . + Vk has cardinality ≤ (k + 1)q + p.
Then we derive with (12) and (11) that under conditions (9) or (8) (respectively):

E|Z − S|2 � (k + 1)q + p

n

We notice that Y follows the distribution of

√
kp

n
σpN and then working with Gaussian

random variables:

E|Y − σN |2 ≤
∣∣∣∣kpn − 1

∣∣∣∣σ2
p +

∣∣σ2
p − σ2

∣∣
Remarking that kp/n− 1 � q/p e need to bound

|σ2
p − σ2| ≤

∑
|i|<p

|i|
p
|EX0Xi|+

∑
|i|>p

|EX0Xi|

14



Set ai = |EX0Xi|, under conditions (9) or (8) (respectively), the series
∑∞

i=0 ai converge
and sj =

∑∞
i=j ai →j→∞ 0 then

|σ2
p − σ2| ≤ 2

p−1∑
i=0

i

p
· ai + 2sp ≤

2
p

p−1∑
i=0

si + 2sp,

Cesaro lemma entails that this term converges to 0. Hence |Ef(S) − f(Z)| + |Ef(Y ) −
f(σN)| tends to 0 as n ↑ ∞.
To precise a rate of convergence, we assume that ai = O(i−α) with α > 1; then w

|σ2
p − σ2| � p1−α.

The convergence rate is thus given by q
p + p

n + p1−α if EX0Xi = O(i−α). Remarking
that EX0Xi = Cov(X0, Xi), we then use equations (11) and (12) and we find α = κ or
α = λ(m− 2)/(m− 1) depending of the weak-dependence setting.

With p = na, q = nb, those bounds become:

nb−a + na−1 + na(1−κ), in the κ-weak dependence setting,

nb−a + na−1 + na(1−λ(m−2)/(m−1)), under λ-weak dependence.

4.1.2 Main terms

It remains to control the second and the third terms of the sum. As usual in the Lindeberg
technique:

|Ef(Z)− f(Z∗)| ≤
∑k

j=1 |E∆j |,

|Ef(Z∗)− f(Y )| ≤
∑k

j=1 |E∆′
j |,

where ∆j = f(Wj + xj)− f(Wj + x∗j ), j = 1, . . . , k with

xj = 1√
n
Uj , x∗j = 1√

n
U∗

j , Wj = wj +
∑

i>j x
∗
i , wj =

∑
i<j xi

and ∆′
j = f(W ′

j + x∗j )− f(W ′
j + x′j), j = 1, . . . , k with

x′j = 1√
n
V ′

j , W ′
j =

∑
i<j x

∗
i +

∑
i>j x

′
i.

Now we use the special form of f and the independence properties of the variables U∗
i and

V ′
i to write:

E∆j =
(
Ef(wj)f(xj)− Ef(wj)Ef(x∗j )

)
Ef

∑
i>j

x∗i

 ,

E∆j =
(
Ef(x∗j )− Ef(x′j)

)
Ef
(
W ′

j

)
.

We then control the terms Ef
(∑

i>j x
∗
i

)
and Ef

(
W ′

j

)
by the fact that ‖f‖∞ ≤ 1 and we

introduce a coupling to obtain:

|E∆j | ≤

∣∣∣∣∣∣Cov

f
∑

i<j

xi

 , f(xj)

∣∣∣∣∣∣ ,
|E∆j | =

∣∣Ef(x∗j )− Ef(x′j)
∣∣ .
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• For ∆j , we use the weak-dependence definition to control this bound rewriting
|Cov(F (Xm,m ∈ Bi, i < j), G(Xm,m ∈ Bj))|, remarking that ‖F‖∞ ≤ 1 and the

control of LipF for F (x1, . . . , xkp) = f
(

1√
n

∑
i<j xi

)
(with possible repetitions in

the sequence (x1, . . . , xkp)):∣∣∣∣∣∣f
 1√

n

∑
i<j

xi

− f

 1√
n

∑
i<j

yi

∣∣∣∣∣∣ ≤

∣∣∣∣∣∣1− exp it ·

 1√
n

∑
i<j

(yi − xi)

∣∣∣∣∣∣
≤ ‖t‖2√

n

kp∑
i=1

‖yi − xi‖2.

For G(x1, . . . , xp) = f (
∑p

i=1 xi/
√
n), we have ‖G‖∞ = 1 and LipG � 1/

√
n. We

then distinguish the two cases, remarking the gap between the left and the right
terms in the covariance is more than q:

– In the κ dependence setting:

|E∆j | � kp · p · 1√
n
· 1√

n
· κq.

– In the λ dependence setting:

|E∆j | �
(
kp · p · 1√

n
· 1√

n
+ kp · 1√

n
+ p · 1√

n

)
· λq.

Remarking the bounds do not depend of j, we then control the contribution of the
second term as:

|Ef(Z)− f(Z∗)| � kp · κq, under κ,

� kp(1 +
√
k/p) · λq, under λ.

Reminding that p = na, q = nb, κr = O (r−κ) or λr = O
(
r−λ
)
, the bounds become

n1−κb or n1+(1/2−a)+−λb in respectively κ or λ context.

• For ∆′
j , writing Taylor formula up to order 2 or 3 respectively yields:

f(x∗j )− fj(x′j) ≤ (x∗j − x′j)‖f ′‖∞ +
1
2
(x∗j − x′j)

2‖f ′′‖∞ + rj

|rj | ≤ 1
2
‖f ′′‖∞(x∗j − x′j)

2, or

≤ 1
6
‖f ′′′‖∞|x∗j − x′j |3,

We then have for an arbitrary δ ∈ [0, 1]:

E|rj | � E((|x∗j |2 + |x′j |2) ∧ (|x∗j |3 + |x′j |3))
� E(|x∗j |2 ∧ |x∗j |3) + E(|x′j |2 ∧ |x′j |3)
� E|x∗j |2+δ + E|x′j |2+δ.
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Then, using the stationarity of the sequence Xn we obtain:

|E∆′
j | � n−1− δ

2

(
E|Sp|2+δ ∨ p1+ δ

2

)
.

We then use the result of lemma 3 to bound the moment E|Sp|2+δ. If κ > 2 + 1
ζ , or

λ > 4 + 2
ζ , where κr = O (r−κ) or λr = O

(
r−λ
)

then there exists δ ∈]0, ζ ∧ 1[ and
C > 0 such that:

E|Sp|2+δ ≤ Cp1+δ/2.

We then obtain:
|Ef(Z∗)− f(Y )| � k(p/n)1+δ/2.

Reminding that p = na, the bound is of order n(a−1)δ/2 in both κ or λ-weak depen-
dence setting.

4.2 Rates of convergence

We present two propositions that give rates of convergence in the weak invariance principle.

Proposition 2 Assume that the weakly dependent stationary process (Xn)n satisfies (2)
then the difference between the characteristic functions is bounded by (C > 0 is a constant):∣∣E (f(Sn/

√
n)− f(σN)

)∣∣ ≤ Cn−c∗ ,

where c∗ depends of the weakly dependent coefficients:

• in the λ-dependence case, assume that λr = O(r−λ) for λ > 4 + 2
ζ , then c∗ =

A

2
2λ− 1

(2 +A)(λ+ 1)
where

A =

√
(2λ− 6− ζ)2 + 4(λζ − 4ζ − 2) + ζ + 6− 2λ

2
∧ 1,

• in the κ-dependence case, if κr = O(r−κ) for κ > 2 + 1
ζ , then c∗ =

(κ− 1)B
κ(2 +B)

where

B =

√
(2κ− 3− ζ)2 + 4(κζ − 2ζ − 1) + ζ + 3− 2κ

2
∧ 1.

We restrict us in the case d = 1 and we use Theorem 5.1 of Petrov (1995) to obtain:

Proposition 3 (A rate in the Berry Essen bounds) Assume that the real weakly de-
pendent stationary process (Xn)n satisfies the same assumptions than in Proposition 2. We
obtain:

sup
x
|Fn(x)− Φ(x)| = O

(
n−c∗/3

)
.

where c∗ is defined in Proposition 2.

Proof of proposition 2. In the previous section, we have expressed the rates of the
different terms. We recall here them:
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• In the λ-dependence case, we finally only have to consider the three largest rates:
(a−1)δ/2, 1+(1/2−a)+−λb and b−a. The previous optimal choice of a∗ is smaller
than 1/2, then we have to consider the rate 3/2− a− λb and not 1− λb. Then we
find:

a∗ =
(1 + λ)δ + 3

(2 + δ)(λ+ 1)
∈]0; 1/2[

b∗ = a∗
3

2(λ+ 1)
∈]0; a∗[

Finally, we obtain the rate n−c∗ .

• In the κ-dependence case:

– Auxiliary terms: b− a, a− 1 and a(1− κ),

– Main terms: 1− κb and (a− 1)δ/2.

The idea is to choose carefully a∗ and b∗ ∈]0; 1[ such that the main rates are equal.
Because δ < 1, a > b, we directly see that (a− 1)δ/2 > a− 1 and 1− κb > a(1− κ),
so that the only rate of the auxiliary term it remains to consider is b − a. Finally,
we obtain

a∗ = 1− 2κ− 2
(2 + δ)κ+ δ

∈]0; 1[

b∗ = a∗
2 + 2δ

2 + δ + δκ
∈]0; a∗[

Finally, we obtain the proposed rate. �

Proof of proposition 3. We have seen that for t fix, we control the distance between the
characteristic functions of S and σN by a term proportional to t2n−c∗ . Here, t2 appear
because |t| was include in the constants (not depending of n) of the bound of the Lipschitz
coefficients. Let Φ be the distribution function of σN and Fn the one of S. Theorem 5.1
p. 142 in Petrov (1995) gives, for every T > 0:

sup
x
|Fn(x)− Φ(x)| � n−c∗T 2 + 1/T.

We optimize T to obtain the rate of convergence in the central limit theorem. �

4.3 Proof of lemma 1

4.3.1 Existence of Bernoulli shifts with dependent inputs

We first prove the existence of Bernoulli shift with dependent innovations in L1. The
same proof leads to the existence in Lm for all m ≥ 1 such that lm + 1 ≤ m′. Here we
set ξ(s) = (ξ−i11|i|<s)i∈Z and ξ

(s)
+ = (ξ−i11−s<i≤s)i∈Z for i ∈ Z ∪ {∞}. In order to prove
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the existence of Bernoulli shift with dependent innovations, we show that H(ξ(∞)) is the
sums of a normally convergent series in L1. Then formally

X0 = H(ξ(∞)) = H(0) + (H(ξ(1))−H(0))

+
∞∑

s=1

(
(H(ξ(s+1))−H(ξ(s)+ )) + (H(ξ(s)+ )−H(ξ(s)))

)
With (3) we obtain

|H(ξ(1))−H(0)| ≤ b0|ξ0|
|H(ξ(s+1))−H(ξ(s)+ )| ≤ b−s(‖ξ(s)+ ‖l

∞ ∨ 1)|ξ−s|

|H(ξ(s)+ )−H(ξ(s)| ≤ bs(‖ξ(s)‖l
∞ ∨ 1)|ξs|

Use Hölder inequality yields

E
∣∣∣H(ξ(1))−H(0)

∣∣∣+ ∞∑
s=1

E
∣∣∣H(ξ(s+1))−H(ξ(s)+ )

∣∣∣+ E
∣∣∣H(ξ(s)+ )−H(ξ(s))

∣∣∣
≤
∑
i∈Z

2|i|bi(‖ξ0‖1 + ‖ξ0‖l+1
l+1) (18)

Hence assumption l+1 ≤ m′ with
∑

i∈Z |i|bi <∞ together imply that the variable H(ξ) is
well defined. The sam’e way proves that the process Xn = H(ξn−i, i ∈ Z) is a well defined
process in L1 and it is strongly stationary. We can extend this result in Lm for all m ≥ 1
such that lm+ 1 ≤ m′.

4.3.2 Weakl dependence properties of the model.

We now have to exhibit Lipschitz function and then truncate. We write ξ = ξ ∨ (−T )∧ T
for a truncation T we will fix further. Then we denote X(r)

n = H(ξ(r)) and X(r)
n = H(ξ(r)).

Furthermore, for any k ≥ 0 and any (u+v)-tuples such that s1 < · · · < su ≤ su +k ≤ t1 <

· · · < tv, we set Xs = (Xs1 , . . . , Xsu), Xt = (Xt1 , . . . , Xtv) and X
(r)
s = (X(r)

s1
, . . . , X

(r)
su

),

X
(r)
t = (X(r)

t1 , . . . , X
(r)
tv ). Then we have for all f, g satisfying ‖f‖∞, ‖g‖∞ ≤ 1 and Lip f +

Lip g <∞:

|Cov(f(Xs), g(Xt))| ≤ |Cov(f(Xs)− f(X(r)
s ), g(Xt))| (19)

+ |Cov(f(X(r)
s ), g(Xt)− g(X(r)

t ))| (20)

+ |Cov(f(X(r)
s ), g(X(r)

t ))|. (21)

Using ‖g‖∞ ≤ 1, the term (19) in the sum is bounded with:

2Lip f · E

∣∣∣∣∣
u∑

i=1

(Xsi −X
(r)
si

)

∣∣∣∣∣ ≤ 2uLip f
(

max
1≤i≤u

E
∣∣∣Xsi −X(r)

si

∣∣∣+ max
1≤i≤u

E
∣∣∣X(r)

si
−X

(r)
si

∣∣∣) .
With the same arguments that for the proof of the existence of H(ξ(∞)) (see equation
(18)), the first term in the right sight is bounded with

∑
i≥s 2|i|bi(‖ξ0‖1 +‖ξ0‖l+1

l+1). Notice
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now that if x, y are sequences with xi = yi = 0 if |i| ≥ r then a repeated application of
the previous inequality (3) yields

|H(x)−H(y)| ≤ L(‖x‖l
∞ ∨ ‖y‖l

∞ ∨ 1)‖x− y‖ (22)

where L =
∑

i∈Z bi <∞ because
∑

i∈Z |i|bi <∞. Then the second term is bounded using
the equation (22):

E
∣∣∣X(r)

si
−X

(r)
si

∣∣∣ = E
∣∣∣H (ξ(r))−H

(
ξ
(r)
)∣∣∣

≤ LE

( max
−r≤i≤r

|ξi|
)l ∑

−r≤j≤r

{|ξj |11ξj≥T }


≤ L(2r + 1)2E

(
max

−r≤i,j≤r
|ξi|l{|ξj |11|ξj |≥T }

)
≤ L(2r + 1)2‖ξ0‖m′

m′T l+1−m′

The second term (20) of the sum is bounded analogously. We write the third term as∣∣∣Cov(F (r)(ξsi+j , 1 ≤ i ≤ u, |j| ≤ r), G(r)(ξti+j , 1 ≤ i ≤ v, |j| ≤ r)
∣∣∣ ,

where F (r) : Ru(2r+1) → R and G
(r) : Ru(2r+1) → R. Under the assumption r ≤ [k/2],

we use the ε = η or λ-weak dependence of ξ in order to bound this covariance term by
ψ(LipF (r)

,LipG(r)
, u(2r + 1), v(2r + 1))εk−2r, with respectively ψ(u, v, a, b) = uvab or

ψ(u, v, a, b) = uvab + ua + vb. Let x = (x1, . . . , xu) and y = (y1, . . . , yu) where xi, yi ∈
R2r+1, we bound LipF (r):

LipF (r) = sup
|f(H(xsi+l, 1 ≤ i ≤ u, |l| ≤ r)− f(H(ysi+l, 1 ≤ i ≤ u, |l| ≤ r)|∑u

j=1 ‖xj − yj‖
.

Using (22), we have:

|F (r)(x)− F
(r)(y)| ≤ Lip fL

u∑
i=1

(
‖xsi‖∞ ∨ ‖ysi

‖∞ ∨ 1
)l ‖xsi − ysi

‖

≤ Lip fLT l
u∑

i=1

∑
−r≤l≤r

|xsi+l − ysi+l|.

We thus obtain LipF (r) ≤ Lip f · L · T l. Similarly LipG(r) ≤ Lip g · L · T l. In the η-weak
dependence, we bound the covariance:

|Cov(f(Xs), g(Xt))| ≤ (uLip f + vLip g)4
∑
i≥r

|i|bi(‖ξ0‖1 + ‖ξ0‖l+1
l+1) + (2r + 1)L

(
(2r + 1)2‖ξ0‖m′

m′T l+1−m′
+ T lηξ,k−2r

)
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We then fix the truncation Tm′−1 =
2(2r + 1)‖ξ0‖m′

m′

ηξ,k−2r
to obtain the result of the lemma 1

in the η-weak dependent case. Under the λ-weak dependence:

|Cov(f(Xs), g(Xt))| ≤ (uLip f + vLip g + uvLip fLip g)({
4
∑
i≥r

|i|bi(‖ξ0‖1 + ‖ξ0‖l+1
l+1) + (2r + 1)L

(
2(2r + 1)T l+1−m′‖ξ0‖m′

m′ + T lλξ,k−2r

)}
∨
{

(2r + 1)2L2T 2lλξ,k−2r

})
We then fix the truncation T l+m′−1 =

2‖ξ0‖m′
m′

Lλξ,k−2r
to obtain the result of the lemma 1 in the

η-weak dependent case.
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