Renormalization of the local time for the d-dimensional fractional Brownian motion with Nparameters.

M. Eddahbi¹

Département de Mathématiques et Informatique Faculté des Sciences et Techniques, Université Cadi Ayyad, B.P. 549 Marrakech, Maroc

R. Lacayo, J.L. Solé² and J. Vives² Departament de Matemàtiques Universitat Autònoma de Barcelona 08193 Bellaterra, Barcelona, Spain

C.A. Tudor Samos/Matisse. 90, rue de Tolbiac Université de Panthéon-Sorbonne. Paris 1 75634 Paris Cedex 13, France

Abstract

We study the asymptotic behavior in Sobolev norm of the local time of the d-dimensional fractional Brownian motion with N-parameters when the space variable tends to zero, both for the fixed time case and when simultaneously time tends to infinity and space variable to zero.

AMS 1991 subject classifications: 60H05, 60H10

Introduction 1

Let $B^H = \{B^H_t : t \ge 0\}$ be a standard fractional Brownian motion (fBm for brevity) with Hurst parameter $H \in (0,1)$. It is well known that this process is a centered Gaussian process which admits an integral representation of the form

$$B_t^H = \int_0^t K_H(t,s) dW_s,$$

where W is an standard Wiener process. The kernel $K_H(t,s)$ is given, for s < t, by

$$K_H(t,s) = c_H(t-s)^{\mu} - \mu c_H \int_s^t (r-s)^{\mu-1} (1 - (\frac{s}{r})^{-\mu}) dr, \qquad (1)$$

with c_H being a constant and $\mu = H - \frac{1}{2}$. The covariance function of B_t^H can be represented as

¹Supported by the Spanish Ministerio de Educación, Cultura y Deporte: Grant SB2000–0060.

²Supported by the Spanish Ministerio de Educación, Cultura y Deporte: Grant BFM2000–0009 and by the Catalan CIRIT: Grant 2001SGR00174.

$$R_H(s,t) = \mathbb{E}(B_s^H B_t^H) = \int_0^{s \wedge t} K_H(t,r) K_H(s,r) dr,$$

and has the explicit form

$$R_H(s,t) = \frac{1}{2}(s^{2H} + t^{2H} - |t-s|^{2H}).$$

A very good survey about the fBm is the paper of Nualart [5]. For $\overline{H} = (H_1, \ldots, H_N)$ the (N, 1)-fBm is defined as

$$B_t^{\overline{H}} = \int_{[0,t]} K_{\overline{H}}(t,s) dW_s,$$

where $K_{\overline{H}}(t,s) = \bigotimes_{j=1}^{N} K_{H_j}(t_j,s_j), s,t \in \mathbb{R}^N_+$ and W is an standard N-parameter Brownian motion. Its covariance function is

$$R_{\overline{H}}(s,t) = \mathbb{E}(B_s^{\overline{H}}B_t^{\overline{H}}) = \prod_{j=1}^N R_{H_j}(s_j,t_j).$$

Finally given the $N \times d$ -matrix $\overline{H} = (\overline{H}_1, \ldots, \overline{H}_d)$ where for $i = 1, \ldots, d$ and $j = 1, \ldots, N, \overline{H}_i = (H_{i,1}, \cdots, H_{i,N})$ is a column vector and $H_{i,j} \in (0,1)$, the Nparameter, d-dimensional fractional Brownian motion ((N, d)-fBm for brevity) is defined by $B^{\overline{H}} = (B_t^{\overline{H}_1}, \dots, B_t^{\overline{H}_d})_{t \in \mathbb{R}^N_+}$ where its components are independent and for every $i = 1, \ldots, d, B^{\overline{H}_i}$ is a (N, 1)-fBm with Hurst parameter \overline{H}_i . For any $t \in \mathbb{R}^N_+$ and $x \in \mathbb{R}^d$, the local time L(t, x) of the (N, d)-fBm can be

defined as the density of the occupation measure μ_t , defined as

$$\mu_t(A) = \int_{[0,t]} \mathbbm{1}_A(B_s^{\overline{H}}) ds, \ A \in \mathcal{B}(\mathbb{R}^d).$$

Formally, we can write

$$L(t,x) = \int_{[0,t]} \delta_x(B_s^{\overline{H}}) ds$$

where δ_x denotes the Dirac function and $\delta_x(B_s^{\overline{H}})$ is therefore a distribution in the Watanabe sense (see [6]).

This local time for (N, d)-fBm has been studied by Xiao and Zhang [7], Hu and Oksendal [2] and Eddahbi et al. [1] between others.

The aim of this paper is to study the asymptotic behavior of L(t, x) when |x|, the euclidean norm of x in \mathbb{R}^d , goes to 0, both for a fixed time and when the time goes to infinity, and we renormalize his Sobolev norm. We generalize the results of [3] from the (N, d)-standard Brownian motion to the (N, d)-fractional Brownian motion. In the standard Brownian motion case, the covariance function is simply $R_{\frac{1}{2}}(s,t) = s \wedge t$. Here, the control of the covariance function $R_H(s,t)$ for $H \neq \frac{1}{2}$ is the main difficulty.

Section 2 is devoted to the presentation of the problem. In particular we review from [1] the chaotic decomposition of the local time L(t, x) as a functional of the (N, d)-fBm and its regularity in terms of Sobolev-Watanabe norms. In section 3 we present a list of auxiliary lemmas. Section 4 is devoted to the presentation and proof of the main result, namely the asymptotic behavior of this local time, for fixed t, in the case $H_{i,j} = H, \forall i, j$, when |x| goes to 0. In section 5 we extend the result to the case $\underline{t} := t_1 \cdots t_N$ going to infinity.

$\mathbf{2}$ Preliminaries and statement of the problem

If F is a square integrable Brownian random variable, it can be represented by its Wiener chaos expansion

$$F = \sum_{n=0}^{\infty} I_n(f_n),$$

where $I_n(f_n)$ denotes the multiple Itô stochastic integral of the symmetric kernel $f_n \in L^2(\mathbb{R}^n_+)$ with respect to the Wiener process W.

If **L** is the Ornstein–Uhlenbeck operator

$$\mathbf{L}F = -\sum_{n=0}^{\infty} nI_n(f_n),$$

 $p \in (1,\infty)$ and $\alpha \in \mathbb{R}$, we define the Sobolev–Watanabe spaces $\mathbb{D}^{\alpha,p}$ as the closure of the set of polynomial random variables with respect to the norm

$$||F||_{\alpha,p} = ||(\mathbf{Id} - \mathbf{L})^{\frac{\alpha}{2}}F||_{L^{p}(\Omega)},$$

where **Id** stands for the identity mapping.

We denote by D the chaotic derivative operator. It acts on multiple Itô stochastic integrals as

$$D_t(I_n(f_n)) = nI_{n-1}(f_n(\cdot, t)),$$

and is continuous from $\mathbb{D}^{\alpha,p}$ into $\mathbb{D}^{\alpha-1,p}(L^2(\mathbb{R}_+))$.

It is known that a Brownian random variable F belongs to $\mathbb{D}^{\alpha,2}$ if and only if its chaotic decomposition $\sum_{n=0}^{\infty} I_n(f_n)$ satisfies

$$\sum_{n=0}^{\infty} (1+n)^{\alpha} ||I_n(f_n)||_2^2 < \infty,$$

where $||I_n(f_n)||_2^2 = n! ||f_n||_2^2$. Set $\mathbb{D}^{\infty,2} = \bigcap_{\alpha \in \mathbb{R}} \mathbb{D}^{\alpha,2}$. If $F \in \mathbb{D}^{\infty,2}$, we can compute its chaos expansion using the Stroock formula

$$F = \sum_{n=0}^{\infty} \frac{1}{n!} I_n(\mathbb{E}(D^n F)).$$

For a complete survey of this subjects we refer the reader to the book of Watanabe [6].

Let $p_{\varepsilon}(x)$ be the centered Gaussian kernel with variance $\varepsilon > 0$. Consider also, for $x \in \mathbb{R}^d$ and $\varepsilon > 0$, the Gaussian kernel on \mathbb{R}^d given by

$$p_{\varepsilon}^{d}(x) = \prod_{i=1}^{d} p_{\varepsilon}(x_i), \ x = (x_1, \dots, x_d).$$

We denote by \mathbf{H}_n the *n*-th Hermite polynomial, defined for $n \ge 1$, by

$$\mathbf{H}_{n}(x) = \frac{(-1)^{n}}{n!} \exp(\frac{x^{2}}{2}) \frac{d^{n}}{dx^{n}} (\exp(-\frac{x^{2}}{2})), \ x \in \mathbb{R}$$

and $H_0(x) = 1$.

As we proved in [1] the chaotic decomposition of the local time of the (N, d)-fBm is

$$L(t,x) = \sum_{n_1,\dots,n_d \ge 0} \int_{[0,t]} \prod_{i=1}^d \frac{p_{\underline{s}^{2\overline{H}_i}}(x_i)}{\underline{s}^{n_i\overline{H}_i}} \mathbf{H}_{n_i}(\frac{x_i}{\underline{s}^{\overline{H}_i}}) I^i_{n_i}(K_{\overline{H}_i}(s,\cdot)^{\otimes n_i}) ds,$$

provided that $\sum_{j=1}^{N} \frac{1}{H_{j}^{*}} > d$, where $t \in \mathbb{R}^{N}_{+}$, $x \in \mathbb{R}^{d}$, $\underline{s} = s_{1} \cdots s_{N}$ and $\underline{s}^{\overline{H}_{i}} = \prod_{j=1}^{N} s_{j}^{H_{i,j}}$. The integrals $I_{n_{i}}^{i}$ denotes the multiple Itô stochastic integrals with respect to the independent N-parameter Wiener processes W^{i} . Finally $H_{j}^{*} = \max\{H_{i,j}, i = 1, \ldots, d\}$.

Moreover, in [1] we proved that this functional belongs to the space $\mathbb{D}^{\alpha,2}$ if

$$\alpha < \sum_{j=1}^N \frac{1}{2H_j^*} - \frac{d}{2}.$$

If all $H_{i,j} = H$, this expression becomes $\alpha < \frac{N}{2H} - \frac{d}{2}$, and then a sufficient condition for the local time to be in $L^2(\Omega)$ is N > Hd. Observe that this sufficient condition is also founded in Xiao and Zhang [7]. From now on we will suppose always this condition.

Recall that if $H = \frac{1}{2}$,

$$\sum_{i=1}^{N} \frac{1}{2H_{j}^{*}} - \frac{d}{2} = N - \frac{d}{2},$$

which is the same condition obtained in [3] for the N-parameter Wiener process in \mathbb{R}^d .

3 Auxiliary lemmas

Lemma 1 If $\frac{1}{4} \leq \beta \leq \frac{1}{2}$ we have

$$\sup_{x \in \mathbb{R}} |\sqrt{n!} \mathbf{H}_n(x) e^{-\beta x^2}| \le c(n \lor 1)^{-\frac{8\beta - 1}{12}}$$

Proof: This result is proved in [4].

Remark 2 The factor $\sqrt{n!}$ appears because we do not use the same definition of Hermite polynomials as in [4].

Lemma 3 Let $d \ge 1$ and $\nu \in (0, 1)$. We can choose a universal constant c such that for any $m \ge 1$,

$$\sum_{n_1 + \dots + n_d = m} \prod_{i=1}^d (n_i \vee 1)^{-\nu} \le cm^{d(1-\nu)-1}$$

Proof: This result is proved in [4].

Lemma 4 Let γ and a be positive constants and $b \in \mathbb{R}$. Set $\alpha = \frac{b-1}{a}$. Then

$$\int_{[0,1]^N} \exp(-\frac{\gamma}{\underline{s}^a}) \frac{ds}{\underline{s}^b} = \frac{1}{(N-1)!} (\frac{1}{a})^N \gamma^{-\alpha} g_{N-1}(\gamma, \alpha)$$

where

$$g_{N-1}(\gamma,\alpha) := \int_{\gamma}^{\infty} t^{\alpha-1} e^{-t} (\log \frac{t}{\gamma})^{N-1} dt.$$

Proof:

Using the change of variables $u_1 = s_1 \cdots s_N, u_2 = s_2 \cdots s_N, \ldots, u_N = s_N$, with Jacobi determinant $\frac{1}{u_2 \cdots u_N}$, we obtain

$$\int_{[0,1]^N} \exp(-\frac{\gamma}{\underline{s}^a}) \frac{ds}{\underline{s}^b} = \int_{\{0 \le u_1 \le \dots \le u_N \le 1\}} \frac{1}{u_1^b} \exp(-\frac{\gamma}{u_1^a}) \frac{du_N \cdots du_2}{u_N \cdots u_2} du_1$$
$$= \frac{1}{(N-1)!} \int_0^1 (\log \frac{1}{r})^{N-1} \frac{1}{r^b} \exp(-\frac{\gamma}{r^a}) dr,$$

and making the change of variable $\gamma r^{-a} = t$ we get the desired result.

Lemma 5 The function

$$Q_H(z) = \begin{cases} \frac{R_H(1, z)}{z^H} & \text{if } z \in (0, 1] \\ 0 & \text{if } z = 0, \end{cases}$$

has the following properties:

- 1. It is strictly increasing and it continuously maps [0,1] onto [0,1]. Moreover, $Q_H(1) = 1$.
- 2. For fixed $\delta \in (0,1)$ and for any $z \in [0, 1-\delta]$, it satisfies the inequality

$$Q_H(z) \le c(H,\delta) z^G,$$

where $G = H \wedge (1 - H)$.

 \Box .

3. For fixed $\delta \in (0,1)$ and $\beta > 0$, it satisfies the inequality

$$\int_{1-\delta}^{1} Q_H(z)^\beta dz \le \frac{c(H,\delta)}{\beta^{\frac{1}{2H}}}$$

Proof:

The proof of parts 1 and 3 are done in [1].

For the part 2 we have

$$Q_H(z) = \frac{1 - (1 - z)^{2H}}{2z^H} + \frac{z^H}{2}.$$

Using Taylor expansion, $1 - (1 - z)^{2H} = 2H(1 - \theta)^{2H-1}z$ with $0 \le \theta \le z$. If $H \ge \frac{1}{2}$, we have $1 - (1 - z)^{2H} \le 2Hz$, and therefore $Q_H(z) \le Hz^{1-H} + \frac{1}{2}z^H \le c_1 z^{1-H}$, c_1 being a positive constant. If $H < \frac{1}{2}$ and $z \in [0, 1 - \delta]$, we have $1 - (1 - z)^{2H} \le 2H\delta^{2H-1}z$, and then $Q_H(z) \le H\delta^{2H-1}z^{1-H} + \frac{1}{2}z^H \le c_2 z^H$, c_2 being another positive constant. \Box

In what follows, for every x > 0 and $\gamma \ge 0$, we denote the complementary incomplete Gamma function as

$$\Gamma(x,\gamma) = \int_{\gamma}^{\infty} e^{-t} t^{x-1} dt$$

In particular $\Gamma(x) := \Gamma(x, 0)$ and $\Gamma(x, \gamma) \leq \Gamma(x)$.

Lemma 6 The function

$$g_{N-1}(\gamma,\alpha) := \int_{\gamma}^{\infty} t^{\alpha-1} e^{-t} (\log \frac{t}{\gamma})^{N-1} dt.$$

has the following behavior when γ tends to 0:

1. If $\alpha > 0$, $g_{N-1}(\gamma, \alpha) = (\log \frac{1}{\gamma})^{N-1} \Gamma(\gamma, \alpha) + \mathcal{O}((\log \frac{1}{\gamma})^{N-2}).$

2. If
$$\alpha = 0, g_{N-1}(\gamma, \alpha) = e^{-\gamma} \frac{1}{N} (\log \frac{1}{\gamma})^N + \mathcal{O}((\log \frac{1}{\gamma})^{N-1}).$$

3. If
$$\alpha < 0, g_{N-1}(\gamma, \alpha) = \gamma^{\alpha} \left(\frac{\Gamma(N)}{|\alpha|^N} + o(\gamma) \right)$$

Proof:

Note first that

$$(\log \frac{t}{\gamma})^{N-1} = \sum_{k=0}^{N-1} \binom{N-1}{k} (\log \frac{1}{\gamma})^{N-1-k} (\log t)^k.$$
(2)

Then,

• If $\alpha > 0$, the function

$$t\longmapsto t^{\frac{\alpha}{2}-1}e^{-t}(\log t)^k$$

is always integrable on $[0, \infty)$ for any $k \in \mathbb{N}$. Therefore,

$$g_{N-1}(\gamma,\alpha) = (\log \frac{1}{\gamma})^{N-1} \Gamma(\gamma,\alpha) + \mathcal{O}((\log \frac{1}{\gamma})^{N-2}).$$

• If $\alpha = 0$, we need to estimate the integral

$$g_{N-1}(\gamma, 0) = \int_{\gamma}^{\infty} t^{-1} e^{-t} (\log \frac{t}{\gamma})^{N-1} dt.$$

Integrating by parts we obtain

$$g_{N-1}(\gamma, 0) = \frac{1}{N} \int_{\gamma}^{\infty} e^{-t} (\log \frac{t}{\gamma})^N dt = \frac{e^{-\gamma}}{N} (\log \frac{1}{\gamma})^N + \mathcal{O}((\log \frac{1}{\gamma})^{N-1})$$

• If $\alpha < 0$, making the change of variable $s = -\alpha \log(\frac{t}{\gamma})$, the result follows immediately.

4 Renormalization of the local time for fixed t

The main purpose of this section is to study the asymptotic behavior of L(t, x), for $t \in \mathbb{R}^N$ and $x \in \mathbb{R}^d$, when $|x| \to 0$. In the case $dH \ge 1$ it has a singularity. An interesting question is to renormalize the local time, that means, to find a deterministic function f(t, x) such that f(t, x)L(t, x) converge to 1 in some precise sense. We will do it with respect the norm $\|\cdot\|_{\alpha,2}$. Then we will obtain a function f(t, x)such that $\|f(t, x)L(t, x)\|_{\alpha,2}$ converges to 1 when $|x| \to 0$, both for fixed t and when $\underline{t} = t_1 \cdots t_N \to \infty$.

Recall the expression of the $\mathbb{D}^{\alpha,2}$ -norm of the local time L(t,x). For the sake of simplicity we take $t := (1, \ldots, 1)$.

We have

$$\|L(\widetilde{1},x)\|_{\alpha,2}^{2} = \sum_{m=0}^{\infty} (1+m)^{\alpha} A_{m}(x), \qquad (3)$$

where

$$A_m(x) = \sum_{n_1 + \dots + n_d = m} \left| \left| \int_{[0,t]} \prod_{i=1}^d \frac{p_{\underline{s}^{2\overline{H}_i}}(x_i)}{\underline{s}^{n_i\overline{H}_i}} \mathbf{H}_{n_i}(\frac{x_i}{\underline{s}^{\overline{H}_i}}) I_{n_i}^i(K_{\overline{H}_i}(s,\cdot)^{\otimes n_i}) \, ds \right| \right|_{L^2(\Omega)}^2,$$

and as

$$E(I_{n_i}^i(K_{\bar{H}_i}(u,\cdot)^{\otimes n_i})I_{n_j}^j(K_{\bar{H}_j}(v,\cdot)^{\otimes n_j})) = \delta_{ij}n_i! (R_{\bar{H}_i}(u,v))^{n_i},$$

$$A_{m}(x) = \sum_{n_{1}+\dots+n_{d}=m} \int_{[0,1]^{N}} du \int_{[0,1]^{N}} dv \prod_{i=1}^{d} \left(\prod_{j=1}^{N} \frac{R_{H_{i,j}}(u_{j}, v_{j})}{(u_{j}v_{j})^{H_{i,j}}}\right)^{n_{i}} \times n_{i}! \mathbf{H}_{n_{i}}(\frac{x_{i}}{\underline{u}^{\overline{H}_{i}}}) \mathbf{H}_{n_{i}}(\frac{x_{i}}{\underline{v}^{\overline{H}_{i}}}) p_{\underline{u}^{2\overline{H}_{i}}}(x_{i}) p_{\underline{v}^{2\overline{H}_{i}}}(x_{i}),$$

and in particular

$$A_0(x) = \left(\int_{[0,1]^N} ds \prod_{i=1}^d \frac{1}{(2\pi \prod_{j=1}^N s_j^{2H_{i,j}})^{\frac{1}{2}}} \exp\left(-\frac{x_i^2}{2 \prod_{j=1}^N s_j^{2H_{i,j}}}\right)\right)^2.$$

In all this section we confine our attention to the situation where $H_{i,j} = H$ for all $(i, j) \in \{1, \ldots, d\} \times \{1, \ldots, N\}$, and use the notation B^H for $B^{\overline{H}}$.

Observe that in this particular case

$$A_0(x) = \frac{1}{(2\pi)^d} \Big(\int_{[0,1]^N} \frac{1}{\underline{s}^{dH}} \exp\Big(-\frac{|x|^2}{2\underline{s}^{2H}} \Big) ds \Big)^2,$$

and

$$A_{m}(x) = \sum_{n_{1}+\dots+n_{d}=m} \int_{[0,1]^{N}} \int_{[0,1]^{N}} \Big(\prod_{j=1}^{N} \frac{R_{H}(u_{j}, v_{j})}{(u_{j}v_{j})^{H}}\Big)^{m} \prod_{i=1}^{d} n_{i}! \mathbf{H}_{n_{i}}(\frac{x_{i}}{\underline{u}^{H}}) \mathbf{H}_{n_{i}}(\frac{x_{i}}{\underline{v}^{H}}) p_{\underline{u}^{2H}}(x_{i}) p_{\underline{v}^{2H}}(x_{i}) du dv.$$

Our main result is the following:

Theorem 7 Let B^H be (N, d)-fBm. Set $\lambda := d - \frac{1}{H}$. For any $\alpha < \frac{N}{2H} - \frac{d}{2}$ we have:

1) If
$$\lambda > 0$$
, $\lim_{|x|\to 0} \|L(1,x)\|_{\alpha,2} \left(\frac{2^{\frac{\lambda}{2}} (\frac{1}{2H})^N |x|^{-\lambda}}{(2\pi)^{\frac{d}{2}} (N-1)!} \left(\log \frac{2}{|x|^2}\right)^{N-1} \Gamma(\frac{\lambda}{2})\right)^{-1} = 1.$
2) If $\lambda = 0$, $\lim_{|x|\to 0} \|L(1,x)\|_{\alpha,2} \left(\frac{(\frac{1}{2H})^N}{(2\pi)^{\frac{d}{2}} N!} \left(\log \frac{2}{|x|^2}\right)^N\right)^{-1} = 1.$
3) If $\lambda < 0$,

$$\lim_{|x|\to 0} \|L(1,x)\|_{\alpha,2} = \|L(1,0)\|_{\alpha,2} = \frac{1}{(2\pi)^{\frac{d}{2}}} \left(\frac{1}{1-Hd}\right)^{\frac{N}{2}} \times \left[\sum_{r=0}^{\infty} (1+2r)^{\alpha} \left(\sum_{r_1+\dots+r_d=r} \prod_{i=1}^d \frac{(2r_i)!}{(r_i)! 2^{2r_i}} \left(\int_0^1 Q_H(z)^m \frac{dz}{z^{dH}}\right)^N\right]^{\frac{1}{2}} < \infty.$$

Remark 8 This theorem shows that for $\lambda \geq 0$ the local time explodes at the origin and for $\lambda < 0$ it does not. Observe that if $H = \frac{1}{2}$, we have that the local time explodes at the origin if and only if $d \geq 2$, as is discussed in [3].

Proof:

The idea of the proof is to show that the convergence of $A_m(x)$ for any $m \ge 1$ when $|x| \to 0$, is controlled by $A_0(x)$ and then the asymptotic behavior of L(1, x)coincides with the asymptotic behavior of $A_0(x)^{\frac{1}{2}}$.

Define now, for $\gamma > 0$ and $m \ge 0$,

$$B_m(\gamma) = \int_{[0,1]^N} \int_{[0,1]^N} \frac{(\prod_{j=1}^N R_H(u_j, v_j))^m}{(\underline{u} \cdot \underline{v})^{H(m+d)}} \exp(-\frac{\gamma}{\underline{u}^{2H}}) \exp(-\frac{\gamma}{\underline{v}^{2H}}) du dv.$$

Clearly,

$$A_0(x) = \frac{1}{(2\pi)^d} B_0(\frac{1}{2}|x|^2).$$

For $m \ge 1$, choosing $\beta \in [\frac{1}{4}, \frac{1}{2})$, we can write

$$\begin{split} A_{m}(x) &= \sum_{n_{1}+\dots+n_{d}=m} \int_{[0,1]^{N}} \int_{[0,1]^{N}} \Big(\prod_{j=1}^{N} \frac{R_{H}(u_{j}, v_{j})}{(u_{j}v_{j})^{H}} \Big)^{m} \frac{1}{(\underline{u}v)^{dH}} \\ &\times \prod_{i=1}^{d} \sqrt{n_{i}!} \operatorname{H}_{n_{i}}(\frac{x_{i}}{\underline{u}^{H}}) \exp\{-\beta \frac{x_{i}^{2}}{\underline{u}^{2H}}\} \sqrt{n_{i}!} \operatorname{H}_{n_{i}}(\frac{x_{i}}{\underline{v}^{H}}) \exp\{-\beta \frac{x_{i}^{2}}{\underline{v}^{2H}}\} \\ &\quad \times \exp\{-(\frac{1}{2}-\beta) \frac{x_{i}^{2}}{\underline{u}^{2H}}\} \exp\{-(\frac{1}{2}-\beta) \frac{x_{i}^{2}}{\underline{v}^{2H}}\} du dv, \end{split}$$

and applying Lemmas 1 and 2 we obtain

$$A_m(x) \le c \frac{1}{(2\pi)^d} m^{d(1-\frac{8\beta-1}{6})-1} B_m((\frac{1}{2}-\beta)|x|^2).$$

Then our problem reduces to the study of the asymptotic behavior of B_m .

As
$$R_H(u_j, v_j) = R_H(1, \frac{v_j}{u_j})u_j^{2H}$$
, we have

$$B_m(\gamma) = 2^N \int_{[0,1]^N} \int_0^{u_N} \cdots \int_0^{u_1} \prod_{j=1}^N \frac{R_H(1, \frac{v_j}{u_j})^m u_j^{2Hm}}{(u_j v_j)^{H(m+d)}} \exp(-\frac{\gamma}{\underline{u}^{2H}}) \exp(-\frac{\gamma}{\underline{v}^{2H}}) dv_N \cdots dv_1.$$

With the change $\frac{v_j}{u_j} = z_j, \forall j = 1, ..., N$ and computing iteratively the previous integral, we find

$$B_m(\gamma) = 2^N \int_{[0,1]^N} \left(\int_{[0,1]^N} \underline{u}^{1-2Hd} \exp\left(\frac{-\kappa(\underline{z})\gamma}{\underline{u}^{2H}}\right) du_1 \cdots du_N \right) \prod_{j=1}^N \frac{R_H(1,z_j)^m}{z_j^{H(m+d)}} dz_1 \cdots dz_N$$

where $\kappa(r) = 1 + \frac{1}{r^{2H}}$. By Lemma 4, with a = 2H and b = 2Hd - 1, we have

$$J_N(\gamma,\underline{z}) = \int_{[0,1]^N} \underline{u}^{1-2Hd} \exp(\frac{-\kappa(\underline{z})\gamma}{\underline{u}^{2H}}) du = c(N,d,H)\gamma^{-\lambda} \int_{\gamma}^{\infty} e^{-s\kappa(\underline{z})} s^{\lambda-1} (\log\frac{s}{\gamma})^{N-1} ds$$

where $\lambda = d - \frac{1}{H} = \frac{b-1}{a}$. Therefore

$$B_m(\gamma) = c(N, H, d)\gamma^{-\lambda} \int_{\gamma}^{\infty} \int_{[0,1]^N} \prod_{j=1}^N \frac{R_H(1, z_j)^m}{z_j^{Hm}} \cdot \frac{e^{-\frac{s}{z^{2H}}}}{\underline{z}^{Hd}} e^{-s} s^{\lambda-1} (\log \frac{s}{\gamma})^{N-1} dz ds.$$

First we will see that for $m > \frac{\lambda H}{G}$, we have

$$B_m(\gamma) \le c(H, d, N) \gamma^{-\lambda} g_{N-1}(\gamma, \lambda) m^{-\frac{N}{2H}}.$$
(4)

Indeed, controlling the exponential by 1, we obtain

$$B_{m}(\gamma) \leq c(N, H, d)\gamma^{-\lambda} \int_{[0,1]^{N}} \prod_{j=1}^{N} \frac{R_{H}(1, z_{j})^{m}}{z_{j}^{H(m+d)}} \int_{\gamma}^{\infty} e^{-s} s^{\lambda-1} (\log \frac{s}{\gamma})^{N-1} dz ds$$

= $c(N, H, d)\gamma^{-\lambda} g_{N-1}(\gamma, \lambda) (\int_{0}^{1} Q_{H}(z)^{m} \frac{1}{z^{dH}} dz)^{N},$

where the function Q_H is introduced in lemma 5.

Now, choosing $\delta \in (0, 1)$, we have

$$\int_0^1 Q_H(z)^m \frac{1}{z^{dH}} dz \le \int_0^{1-\delta} Q_H(z)^m \frac{1}{z^{dH}} dz + (1-\delta)^{-dH} \int_{1-\delta}^1 Q_H(z)^m dz$$

The second summand on the right, using part 3 of Lemma 4, is controlled by $c(H,\delta)m^{-\frac{1}{2H}}.$

For the first summand, if $m > \frac{dH-1}{G} = \frac{\lambda H}{G}$, we fix $\alpha \in (\frac{\lambda H}{G}, m)$, and write

$$\int_{0}^{1-\delta} Q_{H}(z)^{m} \frac{1}{z^{dH}} dz = \int_{0}^{1-\delta} Q_{H}(z)^{m-\alpha} Q_{H}(z)^{\alpha} \frac{1}{z^{dH}} dz$$

Using that Q_H is an increasing function and part 2 of Lemma 5, we control this by

$$Q_H(1-\delta)^{m-\alpha}c(H,\delta,\alpha)\int_0^{1-\delta}z^{\alpha G-dH}dz.$$

As $\alpha > \frac{\lambda H}{G}$, the integral that appears in the last expression is a constant that depends on H, d, α and δ .

10

Therefore, being $Q_H(1-\delta) < 1$, we can estimate this term by

$$c(H, d, \delta, \alpha)m^{-\frac{1}{2H}},$$

and we get (4).

Note that this result is true only for $m > \frac{\lambda H}{G}$. If $\lambda \leq 0$ this covers all cases. But if $\lambda > 0$ the B_m terms with $m \leq \frac{\lambda H}{G}$ are not controlled yet. The following part of the proof will discuss these first terms.

Observe that for any $0 < \epsilon < m$, being $Q_H(\cdot) \leq 1$, we have

$$B_m(\gamma) \le B_\epsilon(\gamma)$$

Now we will see that for $\lambda > 0$,

$$B_{\epsilon}(\gamma) \le c(H, d, N)\gamma^{-\lambda}g_{N-1}(\gamma, \alpha)$$

where α is some positive constant depending also on ϵ .

Indeed, putting c = c(N, H, d),

$$B_{\epsilon}(\gamma) = c\gamma^{-\lambda} \int_{\gamma}^{\infty} \int_{[0,1]^N} \prod_{j=1}^N Q_H(z_j)^{\epsilon} \cdot \frac{e^{-\frac{s}{z^{2H}}}}{\underline{z}^{Hd}} e^{-s} s^{\lambda-1} (\log \frac{s}{\gamma})^{N-1} dz ds$$

$$=c\gamma^{-\lambda}\int_{\gamma}^{\infty}\sum_{k=0}^{N}\binom{N}{k}\underbrace{\int_{0}^{1-\delta}\cdots\int_{0}^{1-\delta}}_{k}\underbrace{\int_{1-\delta}^{1}\cdots\int_{1-\delta}^{1}}_{N-k}\prod_{j=1}^{N}Q_{H}(z_{j})^{\epsilon}\cdot\frac{e^{-\frac{s}{z^{2H}}}}{\underline{z}^{Hd}}e^{-s}s^{\lambda-1}(\log\frac{s}{\gamma})^{N-1}dzds,$$

because the function

$$\prod_{j=1}^{N} Q_H(z_j)^{\epsilon} \cdot \frac{e^{-\frac{s}{\underline{z}^{2H}}}}{\underline{z}^{Hd}},$$

is symmetric in z.

Now estimating Q_H and the exponential by 1 in the integrals between $1 - \delta$ and 1, we obtain

$$B_{\epsilon}(\gamma) \leq c\gamma^{-\lambda} \int_{\gamma}^{\infty} \sum_{k=0}^{N} \binom{N}{k} \int_{0}^{1-\delta} \cdots \int_{0}^{1-\delta} \frac{\delta^{N-k}}{(1-\delta)^{dH(N-k)}}$$
$$\times \prod_{j=1}^{k} Q_{H}(z_{j})^{\epsilon} \cdot \frac{e^{-\frac{s}{(z_{1}\cdots z_{k})^{2H}}}}{(z_{1}\cdots z_{k})^{Hd}} e^{-s} s^{\lambda-1} (\log \frac{s}{\gamma})^{N-1} dz_{1}\cdots dz_{k}) ds$$
$$\leq c\gamma^{-\lambda} \int_{\gamma}^{\infty} \sum_{k=0}^{N} \binom{N}{k} \int_{0}^{1-\delta} \cdots \int_{0}^{1-\delta} \left(\frac{\delta}{(1-\delta)^{dH}}\right)^{N-k} c(H,\delta)^{k\epsilon}$$

$$\times \prod_{j=1}^{k} z_j^{\epsilon G - dH} e^{-\frac{s}{(z_1 \cdots z_k)^{2H}}} e^{-s} s^{\lambda - 1} (\log \frac{s}{\gamma})^{N - 1} dz_1 \dots dz_k ds,$$

where we have used section 2 of Lemma 5.

Now, choosing $\epsilon < \frac{dH}{G}$, we can use Lemma 4 with $a = 2H, b = -\epsilon G + dH, \gamma = s, N = k$ and $\alpha = \frac{dH - \epsilon G^{-1}}{2H}$, to bound the right hand side of the last inequality by

$$c\gamma^{-\lambda} \int_{\gamma}^{\infty} \sum_{k=0}^{N} \int_{s}^{\infty} (\log \frac{t}{s})^{k-1} s^{\frac{\lambda}{2} + \frac{\epsilon G}{2H} - 1} t^{\frac{\lambda}{2} - \frac{\epsilon G}{2H} - 1} e^{-t} e^{-s} (\log \frac{s}{\gamma})^{N-1} dt ds$$

where c is a constant that depends on $H, d, N, \epsilon, k, \delta$.

Using the fact that for any $n \ge 1$ and for $t \ge s$ we have

$$\log \frac{t}{s} \le n \left(\frac{t}{s}\right)^{\frac{1}{n}},$$

and taking n = M(k-1) for a big M, we obtain

$$B_{\epsilon}(\gamma) \le c\gamma^{-\lambda} \sum_{k=0}^{N} \int_{\gamma}^{\infty} \int_{s}^{\infty} s^{\frac{\lambda}{2} + \frac{\epsilon G}{2H} - 1 - \frac{1}{M}} t^{\frac{\lambda}{2} - \frac{\epsilon G}{2H} - 1 + \frac{1}{M}} e^{-t} e^{-s} (\log \frac{s}{\gamma})^{N-1} dt ds,$$

where c depends also on M. From now on in each expression c will be the suitable constant.

As $\epsilon < m < \frac{\lambda H}{G}$, we have $\frac{\lambda}{2} - \frac{\epsilon G}{2H} + \frac{1}{M} > 0$ and

$$B_{\epsilon}(\gamma) \le c\gamma^{-\lambda} \sum_{k=0}^{N} c \int_{\gamma}^{\infty} s^{\frac{\lambda}{2} + \frac{\epsilon G}{2H} - 1 - \frac{1}{M}} e^{-s} \Gamma(s, \frac{\lambda}{2} - \frac{\epsilon G}{2H} + \frac{1}{M}) (\log \frac{s}{\gamma})^{N-1} ds.$$

Controlling the truncated Gamma function by the corresponding Gamma function we obtain

$$B_{\epsilon}(\gamma) \leq c\gamma^{-\lambda} \int_{\gamma}^{\infty} s^{\frac{\lambda}{2} + \frac{\epsilon G}{2H} - 1 - \frac{1}{M}} e^{-s} (\log \frac{s}{\gamma})^{N-1} ds$$
$$= c\gamma^{-\lambda} g_{N-1}(\gamma, \frac{\lambda}{2} + \frac{\epsilon G}{2H} - \frac{1}{M}).$$

Observe that for M sufficiently large

$$\frac{\lambda}{2} + \frac{\epsilon G}{2H} - \frac{1}{M} > 0.$$

Finally for the m = 0 case, using Lemma 4, we have immediately, as $\alpha = \frac{\lambda}{2}$

$$B_0(\gamma) = \frac{1}{((N-1)!)^2} \frac{1}{(2H)^{2N}} \gamma^{-\lambda} g_{N-1}(\gamma, \frac{\lambda}{2})^2.$$

Therefore we have to separate the cases $\lambda \ge 0$ and $\lambda < 0$. For $\lambda \ge 0$ we have

$$||L(\widetilde{1},x)||_{\alpha,2}^2 = \sum_{m=0}^{\infty} (1+m)^{\alpha} A_m(x)$$

• The terms A_m with $m = 1, \ldots, \left[\frac{\lambda H}{G}\right]$ are controlled by

$$c\gamma^{-\lambda}g_{N-1}(\gamma,\frac{\lambda}{2}+\frac{\epsilon G}{2H}-\frac{1}{M})m^{d(1-\frac{8\beta-1}{6})-1}$$

where $\gamma = (\frac{1}{2} - \beta)|x|^2$, and ε and M satisfy

$$\frac{\lambda}{2} + \frac{\epsilon G}{2H} - \frac{1}{M} > 0.$$

Then, by Lemma 6, part 1, this is asymptotically, when $\gamma \downarrow 0$, as

$$c\gamma^{-\lambda} \Big(\log \frac{1}{\gamma}\Big)^{N-1}$$

• The terms A_m with $m \ge \left[\frac{\lambda H}{G}\right] + 1$ are controlled by

$$cm^{d(1-\frac{8\beta-1}{6})-1}\gamma^{-\lambda}g_{N-1}(\gamma,\lambda)m^{-\frac{N}{2H}}$$

Then

$$\sum_{m > \frac{\lambda H}{d}} (1+m)^{\alpha} A_m(x) \le c \Big[\sum_{m > \frac{\lambda H}{d}} m^{d(1-\frac{8\beta-1}{6})-1} m^{-\frac{N}{2H}} (1+m)^{\alpha} \Big] \gamma^{-\lambda} g_{N-1}(\gamma,\lambda),$$

and using the fact that $\alpha < \frac{N}{2H} - \frac{d}{2}$, we have that the series between keys is convergent and the asymptotic behavior of the last expression is, by lemma 6, as

$$c\gamma^{-\lambda} \Big(\log\frac{1}{\gamma}\Big)^{N-1}.$$

Finally,

$$A_0(x) = \frac{1}{(2\pi)^d} B_0(\frac{1}{2}|x|^2) = \frac{1}{(2\pi)^d} \frac{1}{((N-1)!)^2} \frac{1}{(2H)^{2N}} \gamma^{-\lambda} g_{N-1}(\gamma, \frac{\lambda}{2})^2,$$

where $\gamma = \frac{|x|^2}{2}$. When $\gamma \downarrow 0$, this goes to ∞ as $\gamma^{-\lambda} \left(\log \frac{1}{\gamma}\right)^{2N-2}$, and as the exponent of the logarithm is 2N-2, this term dominates the asymptotical behavior. Note that we consider $A_0^{\frac{1}{2}}$ in place of A_0 , to get the functions that appear in the theorem.

The $\lambda < 0$ case follows directly. As we have seen before,

$$\sum_{m\geq 1} (1+m)^{\alpha} A_m(x)$$

is controlled by $\gamma^{-\lambda}g_{N-1}(\gamma,\lambda)$, and by Lemma 6, part 3, this term goes to a constant when $\gamma \downarrow 0$.

In this case the norm $||L(t,x)||_{\alpha,2}$ is continuous. Therefore we don't have an explosion, and

$$\lim_{|x|\to 0} \|L(1,x)\|_{\alpha,2} = \|L(1,0)\|_{\alpha,2} = \left(\sum_{m=0}^{\infty} (1+m)^{\alpha} A_m(0)\right)^{\frac{1}{2}},$$

where

$$A_m(0) = \frac{1}{(2\pi)^d} \left(\sum_{n_1 + \dots + n_d = m} \prod_{i=1}^d n_i ! \mathbf{H}_{n_i}(0)^2 \right) B_m(0),$$

and

$$\begin{split} B_m(0) &= 2^N \int_{[0,1]^N} \left(\int_{[0,1]^N} \underline{u}^{1-2Hd} du_1 \cdots du_N \right) \right) \prod_{j=1}^N \frac{R_H(1,z_j)^m}{z_j^{H(m+d)}} dz_1 \cdots dz_N \\ &= 2^N \left(\int_0^1 u^{1-2Hd} du \right)^N \left(\int_0^1 Q_H(z)^m \frac{dz}{z^{dH}} \right)^N \\ &= \left(\frac{1}{1-Hd} \right)^N \left(\int_0^1 Q_H(z)^m \frac{dz}{z^{dH}} \right)^N \end{split}$$

Note that as $\lambda < 0$, 1 - 2Hd > -1. Finally,

$$\|L(\widetilde{1},0)\|_{\alpha,2}^2 = \frac{1}{(2\pi)^d} (\frac{1}{1-Hd})^N \sum_{m=0}^\infty (1+m)^\alpha (\sum_{n_1+\dots+n_d=m} \prod_{i=1}^d n_i! \cdot \mathbf{H}_{n_i}(0)^2) (\int_0^1 Q_H(z)^m \frac{dz}{z^{dH}})^N = \frac{1}{2} \sum_{i=1}^d (1+i)^{i} \sum_{m=0}^d (1+i)^{i} \sum_$$

$$=\frac{1}{(2\pi)^d}(\frac{1}{1-Hd})^N\sum_{r=0}^{\infty}(1+2r)^{\alpha}(\sum_{r_1+\dots+r_d=r}\prod_{i=1}^d\frac{((2r_i)!)}{(r_i!)^22^{2r_i}})(\int_0^1Q_H(z)^m\frac{dz}{z^{dH}})^N,$$

because $H_{2n}(0) = \frac{1}{2^{2n}(n!)^2}$ and $H_{2n+1}(0) = 0$. By the continuity of the norm, it is not necessary to prove the convergence of this series.

Remark 9 Xiao and Zhang proved that when Hd < 1, that is $\lambda < 0$, B^H has a jointly continuous local time.

14

5 Renormalization of the local time when the time tends to infinity

We can also deduce the behavior of the local time L(t, x) when $\underline{t} = t_1 \cdots t_N \to \infty$ and $|x| \to 0$. We also have to distinguish the three cases, namely $\lambda > 0$, $\lambda = 0$ and $\lambda < 0$.

The precise result is the following:

Theorem 10 Let $\{L(t,x) : t \in [0,\infty)^N, x \in \mathbb{R}^d\}$ be the local time of the (N,d)-fBm B^H . Let $\lambda = d - \frac{1}{H}$. Then the following limits hold for any $\alpha < \frac{N}{2H} - \frac{d}{2}$:

1) For $\lambda > 0$,

$$\lim_{\underline{t}\to\infty,|x|\to0} \|L(t,x)\|_{\alpha,2} \left(\frac{2^{\frac{\lambda}{2}}(\frac{1}{2H})^N|x|^{-\lambda}}{(2\pi)^{\frac{d}{2}}(N-1)!} \left(\log\frac{2\underline{t}^{2H}}{|x|^2}\right)^{N-1}\Gamma(\frac{\lambda}{2})\right)^{-1} = 1.$$

2) For $\lambda = 0$,

$$\lim_{\underline{t}\to\infty,|x|\to0} \|L(t,x)\|_{\alpha,2} \left(\frac{(\frac{1}{2H})^N}{(2\pi)^{\frac{d}{2}}N!} (\log\frac{2\underline{t}^{2H}}{|x|^2})^N\right)^{-1} = 1.$$

3) For $\lambda < 0$,

$$\lim_{\underline{t} \to \infty, |x| \to 0} \|L(t, x)\|_{\alpha, 2} (\underline{t}^{(1-dH)} \|L(\widetilde{1}, 0)\|_{\alpha, 2})^{-1} = 1$$

Proof: From the scaling property of the (N, d)-fBm with all the elements $H_{i,j}$ of the matrix of Hurst parameters equals to H, one can show that the two processes

$$\{L(t,x): t \in [0,\infty)^N, x \in \mathbb{R}^d\}$$

and

$$\{\prod_{j=1}^{N} t_{j}^{1-dH} L(\widetilde{1}, (t_{1} \dots t_{N})^{-H} x) : t \in [0, \infty)^{N}, \ x \in \mathbb{R}^{d}\}\$$

have the same law.

Hence we have

$$\|L(t,x)\|_{\alpha,2}^2 = \underline{t}^{2(1-dH)} \|L(\widetilde{1}, \underline{t}^{-H}x)\|_{\alpha,2}^2.$$

and the conclusion follows from the results of the previous section.

Acknowledgment. M. Eddahbi is grateful to the *Centre de Recerca Matemàtica* (*IEC*) and the Department of Mathematics of the UAB, Bellaterra, Barcelona, Spain for the kind support and hospitality he received while this work was carried out.

References

- M. Eddahbi, R. Lacayo, J.L. Solé, C. A. Tudor, J. Vives: Regularity of the local time for the *d*-dimensional fractional Brownian motion with *N*-parameters. *To* appear in Stoc. Analysis and Appl. (2005)
- [2] Y. Hu, B. Oksendal, Chaos expansion of local time of fractional brownian motion. Stochastic Analysis and Applications 20, 6 (2002) 815–837
- [3] P. Imkeller and F. Weisz, The asymptotic behaviour of local time and occupation integrals of the N-parameter Wiener process in ℝ^d. Prob. Theo. Rela. Fields. 98 (1994) 47–75.
- [4] P. Imkeller, V. Perez-Abreu and J. Vives, Chaos expansion of double intersection local time of Brownian motion in R^d and renormalization. Stoc. Proc. Appl. 56, 1 (1995) 1–34.
- [5] D. Nualart, Stochastic calculus with respect to fractional brownian motion and applications. *Contemporary Mathematics* **336** (2003) 3–39
- S. Watanabe, Lectures on Stochastic Differential Equations and Malliavin calculus. Springer. (1984)
- [7] Xiao, Y., Zhang, T., Local times of fractional brownian sheets. Prob. Theo. Rela. Fields 124 (2002) 204–226