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In some applications, for instance biomechanics, turbulence, finance, or internet traffic, it appears rel-
evant to model data with a generalization of a fractional Brownian motion for which the Hurst parameter
H is depending on the frequency as a piece-wise constant function. These processes are called multiscale
fractional Brownian motions. In this contribution, we give a statistical study of the multiscale fractional
Brownian motions. We propose a method based on wavelet analysis to detect the frequency changes,
estimate the different parameters and test the goodness-of-fit. Biomechanical data are then studied with
these new tools, that leads to interesting conclusions.
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1 Introduction

Fractional Brownian motions (f.B.m.) were popularized by Mandelbrot and Van Ness (1968) who suggest
the study of their properties as a typical example of non-Markovian process. F.B.m. are centered Gaussian
processes with stationary increments. These processes are self-similar and their increments are short or
long memory processes and both these properties are controlled by the same parameter : the Hurst index
H. But f.B.m. appears as an ideal mathematical model. In some applications, real data lead to the
modelling by locally self-similar processes with a time-varying Hurst index H(t) (see Cohen (2000) and the
references therein). As a consequence, when the Hurst index is a time-varying function, the increments of
the process are no more stationary.

Here, we consider Gaussian processes having stationary increments with a Hurst index varying with
the frequencies. These kinds of processes have been introduced (implicitly) by Collins and de Luca (1993)
in a statistical study of the position of the center of pressure in upright position, by Rogers (1997) in a
discussion where he rejects the f.B.m. (with a constant Hurst index) as an admissible model for the stock
prices, and by Benassi and Deguy (1999) for image analysis and image synthesis (they have proposed a
model with two different Hurst indexes at low and high frequencies and one frequency of change ωc). An
application to finance of the model proposed by Rogers (1997) is developed in Cheridito (2000).

The previous examples have leaden us to propose a model of generalized f.B.m. with a finite number
K of change points of the Hurst index (following the frequencies). We called it (MK) multiscale fractional
Brownian motion, and we provide the main probabilistic properties of this model in Bardet and Bertrand
(2003). In this paper, we deal with the statistical study of the multiscale f.B.m. and we focus on the
application to biomechanics.

Our plan will be the following : In the following section, we describe the biomechanical data and the
corresponding statistical problem. In Section 3, after a brief reminder of the definition of the multiscale
fractional Brownian motion and its main probabilistic properties, we show that the variogram method is
not relevant for the estimation of the different parameters of a (MK)-f.B.m. We develop another statistical
study based on wavelet analysis and we state (and proved in appendix) a functional central limit theorem
for the empirical wavelet coefficients. It leads, in Section 4, to estimations of the different frequency
changes and Hurst parameters and to a goodness of fit test. Finally, in Section 5, the biomechanical data
are studied with the tools developed in Section 4. All the proofs are given in appendices.

2 The Biomechanical Problem

One motivation of this work is the modeling of biomechanical data corresponding to the regulation of the
upright position of the human being. Using a force platform, the position of the center of pressure (C.O.P.)
during quiet postural stance is determined. This position is usually measured at a frequency of 100 Hz
for the period of one minute, which yields a data set of 6000 observations. The experimental conditions
are conformed to the standards of the Association Française de Posturologie (AFP), for instance the feet
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position (angle and clearance), the eyes open or closed.
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Figure 1 : An example 1 of the trajectory of the C.O.P. during 60s at 100Hz (in mm)

The X axis of the platform corresponds to the fore-aft direction and the Y axis corresponds to the medio-
lateral direction. During the 1970’s, these data were analyzed as a set of points, i.e. without taking into
account their order. During the following decade some studies consider them as a process, and Collins
and de Luca (1993) introduced the use of f.B.m. to model these data. Actually, they use a generalization
of f.B.m. More precisely, the position Xi of the C.O.P. is observed at times ti = i∆ for i = 1, . . . , N

(∆ = 0.01 s). The study of Collins and de Luca is based on the empirical variogram

VN (δ) =
1

(N − δ)

N−δ∑

i=1

(
X(i+δ)∆ −Xi∆

)2 (1)

where δ ∈ IN∗. For a f.B.m., we have IEVN (δ) = σ2 ∆2H × δ2H and after plotting the log-log graph of the
variogram as a function of the lag time, i.e. (log δ, log VN (δ)), a linear regression provides the slope 2H.
Typically, one gets the following type of figure (see Figure 2). It is considered by Collins and de Luca to
be a ”f.B.m.” with two regimes : with slope 2H0 (short term) and with slope 2H1 (long term) separated

1these experimental data were realized by A. Mouzat and are used in [11].
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by a critical time lag δc and these parameters are estimated graphically :
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Figure 2 : An example of the log-log graph of the variogram for the previous trajectories X (-.) and Y (-).

They found H0 > 0.5, H1 < 0.5 and a critical time lag δc ' 1 s. These results are interpreted as
corresponding to two different kinds of regulation of human stance : at long term H1 < 0.5 the process is
anti-persistent, at short term H0 > 0.5 and the process is persistent. This method has been used many
times in biomechanics with different experimental conditions (opened eyes versus closed eyes, different feet
angles,...), but is missing a mathematical model and its statistical study to obtain confidence intervals on
the two slopes 2H0, 2H1 and the critical time lag δc.

3 The multiscale fractional Brownian motion and its statistical

study based on wavelet analysis

3.1 Description of the model

A fractional Brownian motion BH = {BH(t), t ∈ IR+} of parameters (H, σ) is a real centered Gaussian
process with stationary increments and IE |BH(s)−BH(t)|2 = σ2 |t−s|2H , ∀(s, t) ∈ IR2

+ where H ∈]0, 1[
and σ > 0. The fractional Brownian motion (f.B.m.) has been proposed by Kolmogorov (1940) who defined
it by the harmonizable representation

BH(t) =
∫

IR

(
eitξ − 1

)

|ξ|H+1/2
Ŵ (dξ) (2)

where W (dx) is a standard Brownian measure. and Ŵ (dξ) its Fourier transform. We refer to Samorodnit-
sky and Taqqu, 1994 for the question of equivalence of the different representations of the f.B.m. From the
harmonizable representation, a natural generalization is the multiscale fractional Brownian motion with
an Hurst index depending on the frequency. More precisely, we define :

Definition 3.1 For K ∈ IN , a (MK)-multiscale fractional Brownian motion
Xρ = {Xρ(t), t ∈ IR+} (simplify by (MK)-f.B.m.) is a process such as

Xρ(t) = 2
K∑

j=0

∫ ωj+1

ωj

σj
(eitξ − 1 )
|ξ|Hj+1/2

Ŵ (dξ) for t ∈ IR+ (3)
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with ω0 = 0 < ω1 < · · · < ωK < ωK+1 = ∞ by convention, σi ∈ IRK
+ and Hi ∈]0, 1[K .

The (MK)-f.B.m. was notably introduced in order to relax the self-similarity property of f.B.m. The
self-similarity is a form of invariance with respect to changes of time scale [23] and it links the behavior at
high frequencies to the behavior at low frequencies.

In Bardet and Bertrand (2003), the main properties of such a process are provided : Xρ is a Gaus-
sian centered process with stationary increments, its trajectories are a.s. of Hölder regularity α, for every
0 ≤ α < HK and its increments form a long-memory process (except if the different parameters verify a
particular relations, i.e., if its spectral density is a continuous function).

3.2 The question of the choice of the estimator

Let Xρ be a (MK)-f.B.m. defined by (3). We observe one path of the process Xρ on the interval [0, TN ]
at the discrete times ti = i × ∆N for i = 1, . . . , N and TN = N × ∆N . We consider the asymptotic
N → ∞, ∆N → 0 and TN → ∞ and want to estimate the parameters of the (MK)-f.B.m. that are *** Changements ***
(H0,H1, . . . , HK), (σ0, σ1, . . . , σK) and (ω1, . . . , ωK).

Even if the model is defined as a parametric model, in the following we prefer to use a semi-parametric
statistics for different reasons. Firstly, the spectral density of Xρ is not continuous (as a general case) and
thus, the classical results of the consistence of the maximum likelihood or Whittle maximum likelihood
estimators in such a case of long memory process (see Fox and Taqqu, 1986, Dahlhaus, 1989 or Giraitis
and Surgailis, 1990) can not be used. Secondly, the following semi-parametric statistics is more robust
than a parametric one if the model is misspecified : for example, if the function H(ξ) is a not exactly a
piece-wise constant function, but a constant function on several intervals.

A semi-parametric method of estimation built on the variogram was developed from the seminal paper
of Istas and Lang (1997) and gave good results in case of the f.B.m. (see Bardet, 2000) or of the multi-
fractionnal f.B.m (see Benassi et al., 1998). But there are difficulties to identify the model (MK)-f.B.m.
with such a method. Indeed, it is obvious to prove that for δ > 0 :

V(δ) = IE (Xρ(t + δ)−Xρ(t))
2 = 4

K∑

j=0

δ2Hj σ2
j

∫ δωj+1

δωj

(1− cos v)
v2Hj+1

dv. (4)

The principle of the variogram’s method ensues from the writing of log
(
V(δ)

)
as an affine function of log δ.

For a (MK)-f.B.m. and with C(Hi) = log
(

4σ2
i

∫ ∞

0

(1− cos v)
v2Hi+1

dv

)
for i = 0, 1, . . . , K, three situations

could provide such a relation :

1. for δ →∞, log
(
V(δ)

)
= 2H0 log δ + log σ2

0 + C(H0) +O(δ−2H0);

2. for δ → 0, log
(
V(δ)

)
= 2HK log δ + log σ2

K + C(HK) +O(δ2−2HK );

3. if K ≥ 2, and if there exists j ∈ {1, . . . , K − 1} such as
ωj+1

ωj
→∞ and more precisely such as
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min
j≤i≤K−1

(
ω

Hi/Hj

j+1

)

max
1≤i≤j

(
ω

(1−Hi)/(1−Hj)
j

) →∞, for





δ × min
j≤i≤K−1

(
ω

Hi/Hj

j+1

)
→∞

δ × max
1≤i≤j

(
ω

(1−Hi)/(1−Hj)
j

)
→ 0

, then

log
(
V(δ)

)
= 2Hj log δ + log σ2

j + C(Hj) +O
(

δ2−2Hj × max
1≤i≤j

(
ω2−Hi

j

))
+ · · ·

· · ·+O


 1

δ2Hj × min
j≤i≤K−1

(
ω2Hi

j+1

)


 (5)

(the proofs of those three expansions come from
∫ ε

0

(1− cos v)
v2H+1

dv = O(ε2−2H) for ε → 0 and
∫ ∞

x

(1− cos v)
v2H+1

dv = O(x−2H)

for x →∞). In those three situations, if one can show that there is a convergent estimator VN (δ) of V(δ),
then a log-log regression of log

(
VN (δ)

)
on log δ could allow an estimation of the different parameters.

However such a method should have a lot of drawbacks. At first, the estimation of ”intermediate” parame-
ters (Hj)1≤j≤K−1 and (σ2

j )1≤j≤K−1 requires very specific asymptotic properties between all the frequency
changes (ωj)1≤j≤K−1 that translate a lake of generality of the method. Moreover, concretely, the frequency
changes are fixed and one obtains rough approximation instead of asymptotic properties (and numerical
simulations show that the log-log plot of the variogram does not exhibit any intermediate linear part).
Secondly, when the model is misspecified the variogram model could lead to inadequate results. For exam-
ple the following picture gives the case of a (M2)-f.B.m. where the variogram method would detect only
one frequency change and could not precisely estimate its value. Finally, the variogram’s method could
peharps be applied in the two first previous situations 1. and 2., i.e. for the estimation of (H0, σ

2
0) or

(H0, σ
2
0). But in such cases, δ will have to be a function of N (number of data) and its choice of function

will depend on the unknowns parameters H0 or H1 for obtaining central limit theorems for log
(
VN (δ)

)
...

(see the same kind of problem in et al., 2002).*** Fin des Changements
***
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Figure 3: An example of a theoretical variogram for a (M2)-f.B.m, with H0 = 0.9, H1 = 0.2, H2 = 0.5,
and σ0 = σ1 = σ2 = 5 and ω1 = 0.05, ω2 = 0.5 (in solid, the theoretical variogram, in dot-dashed, its
theoretical asymptotes for δ → 0 and δ →∞).

We deduce from the definition of the model that an interesting method to estimate the parameters of
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a (MK)-f.B.m. could be a spectral domain method. We chose a method based on a wavelet analysis. This
method has been introduced by Flandrin (1992) and was developed by Abry et al. (2002) and Bardet et
al. (2000). We also use here the same results of the wavelet analysis obtained in Bardet and Bertrand
(2003).

3.3 A statistical study based on wavelet analysis

We consider a “mother” wavelet ψ such as:

Assumption (A1): ψ : IR 7→ IR is a C∞ function verifying:

• for all m ∈ IR,
∫

IR

|tmψ(t)| dt < ∞,

• its Fourier transform ψ̂(ξ) is an even function compactly supported on [−β,−α]∪ [α, β] with 0 < α <

β.

These conditions are sufficiently mild and are satisfied by famous wavelets (in particular, Lemarié-Meyer
wavelet). As a consequence of the second condition , for all m ∈ IN ,

∫

IR

tmψ(t)dt = 0. (6)

Note that it is not mandatory to choose ψ to be a “mother” wavelet associated to a multiresolution analysis
of IL2(IR) and the whole theory can be developed without resorting to this assumption : the choice of ψ

is then very large.

Let (a, b) ∈ IR∗+×IR, define λ = (a, b) and the family of functions (ψλ)λ defined by ψλ(t) =
1√
a

ψ

(
t

a
− b

)
.

Parameters a and b are so-called the scale and the shift of the wavelet transform (here we consider a con-
tinue wavelet transform). Let dX(a, b) be the wavelet coefficient of the process X for the scale a and the
shift b, with

dX(a, b) =
1√
a

∫

IR

ψ(
t

a
− b)X(t)dt =< ψλ, X >L2(IR) .

If ψ verifies Assumption (A1) and Xρ is a (MK)-f.B.m. the family of wavelet coefficients verifies the
following properties (see Bardet and Bertrand, 2003) :

1. for a > 0, (dXρ(a, b))b∈IR is a stationary centered Gaussian process such as :

IE
(
d2

Xρ
(a, .)

)
= I1(a) = a

∫

IR

|ψ̂(au)|2 ρ−2(u) du. (7)

2. for all i = 0, 1, · · · ,K, if the scale a is such as [
α

a
,
β

a
] ⊂ [ωi, ωi+1], then

IE
(
d2

Xρ
(a, .)

)
= a2Hi+1σ2

i KHi(ψ), with KH(ψ) =
∫

IR

∣∣∣ψ̂(u)
∣∣∣
2

|u|2H+1
du. (8)

The property (8) is very interesting for the estimation of the parameters of Xρ. Thus, if we consider a
convergent estimator of log

(
IE

(
d2

Xρ
(a, .)

))
, it provides a linear model in log a and log σ2

i . This natural
estimator is log IN (a) with

IN (a) =
1

[N/a]− 1

[N/a]−1∑

k=1

d2
Xρ

(a, k∆N ). (9)

We have a functional central limit theorem for (log IN (a))amin≤a≤amax (see the proof in Bardet and
Bertrand, 2003) :
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Proposition 3.1 Let Xρ be a (MK)-f.B.m., 0 < amin < amax and ψ verify Assumption (A1). Then :
√

N∆N (log IN (a)− log I1(a))amin≤a≤amax

D−→
N→∞

(Z(a))amin≤a≤amax
(10)

with (Z(a)) a centered Gaussian process such as for (a1, a2) ∈ [amin, amax]2,

cov(Z(a1), Z(a2)) =
2a1 a2

I1(a1) I1(a2)

∫

IR

(∫

IR

ψ̂(a1ξ)ψ̂(a2ξ)
|ρ(ξ)|2 e−iuξdξ

)2

du. (11)

Then, if we precise the localization of scales, i.e. frequencies, we obtain the following consequence :

Corollary 3.1 Let i ∈ {0, 1, · · · , K} and assume that
β

α
≤ ωi+1

ωi
. Then,

√
N∆N

(
log IN (1/f)+(2Hi+1) log f−log σ2

i−log KHi(ψ)
)
ωi/α≤f≤ωi+1/β

D−→
N→∞

(Z(1/f))ωi/α≤f≤ωi+1/β (12)

with the centered Gaussian process (Z(.)) such as for (f1, f2) ∈ [
ωi

α
,
ωi+1

β
]2,

cov(Z(1/f1), Z(1/f2)) =
2 (f1 f2)

2Hi

K2
Hi

(ψ)

∫

IR

(∫

IR

ψ̂(ξ/f1)ψ̂(ξ/f2)
|ξ|2Hi+1

e−iuξdξ

)2

du. (13)

For ∆N small enough, this result shows that all parameters Hi and σ2
i could be estimated by using a

linear regression of log IN (1/fj) versus log fj , when the frequencies ωi are known. Moreover, this central
limit theorem shows that a graph of (log f, log IN (1/f)) for f > 0 exhibits different areas of asymptotic
linearity : it suggests the procedure of the following section to estimate and test the frequency changes
(see for instance figures 4 or 6).

3.4 The discretization problem

But before, we have to solve the discretization problem. In fact, the definition of wavelet coefficients
of Xρ needs the knowledge of a continuous path of Xρ. But we suppose here that only a time series
(Xρ(0), Xρ(∆N ), · · · , Xρ(N∆N )) from Xρ is provided. Thus, there is a difference between the previous
theoretical wavelet coefficients and the empirical wavelet coefficients. A similar problem was considered in
Bardet (2002). We follow the procedure and the results of this paper. So, the following empirical wavelet
coefficients eXρ(a, b) have to be considered, with

eXρ(a, b) =
∆N√

a

N∑
p=0

ψ(
p∆N

a
− b)Xρ(p∆N ).

As a consequence, we have to consider JN (a) instead of IN (a) with

JN (a) =
1

[N/a]− 1

[N/a]−1∑

k=1

e2
Xρ

(a, k∆N ). (14)

The empirical wavelet coefficients eXρ(a, k∆N ) converge to theoretical one dXρ(a, k∆N ) when ∆N → 0
(convergence of a Riemann sum) and for k such as k∆N → ∞ and N − k∆N → ∞. More precisely, we
have the following property:

Property 3.1 Let ψ verify Assumption (A1) and Xρ be a (MK)-f.B.m. Then, for a > 0
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1. for all m ∈ IN ,

IE
(
e2
Xρ

(a, k∆N )
)

= IE
(
d2

Xρ
(a, k)

)
+O

(
∆N +

1
(k∆N )m

+
1

(N − k∆N )m

)
. (15)

2. IEIN (a) = IEJN (a) +O(∆N )

Remark 3.1 When H > 1/2, we could approximate d(a, b) by the trapezoid method which would lead in
Property 3.1.2 to an error in O(∆2

N ).

Now, it is possible to provide the functional central limit theorem for (log JN (a))amin≤a≤amax
computed

from (Xρ(0), Xρ(∆N ), · · · , Xρ(N∆N )):

Proposition 3.2 Under assumptions of Proposition 3.1 and with ∆N such as N∆N →∞ and N(∆N )3 →
0 when N →∞. Then, with the same process Z than in (10),

√
N∆N (log JN (a)− log I1(a))amin≤a≤amax

D−→
N→∞

(Z(a))amin≤a≤amax . (16)

As a particular case, for i ∈ {0, 1, · · · ,K} and if
β

α
≤ ωi+1

ωi
, then

√
N∆N

(
log JN (1/f)+(2Hi+1) log f−log σ2

i−log KHi(ψ)
)
ωi/α≤f≤ωi+1/β

D−→
N→∞

(Z(1/f))ωi/α≤f≤ωi+1/β . (17)

A consequence of the discretization problem is that the convergence rate of the central limit theorem (16)
that is

√
N∆N and thus the maximum convergence rate is o(N1/3) from the previous conditions on ∆N .

4 Identification of the parameters

First, let us describe the method at an heuristic level. From Proposition 3.2, Formula (17), we have

log JN (1/f) = −(2Hi + 1)× log(f) + log
(
σ2

i

)
+ log (KHi(ψ)) + ε

(N)
f , (18)

for the frequencies f which satisfy the condition

log (ωi)− log(α) ≤ log (f) ≤ log (ωi+1)− log(β). (19)

Moreover we have (N∆N )1/2
(
ε
(N)
fj

)
1≤j≤m

D−→
N→∞

(Z(1/fj))1≤j≤m. Formula (18) and condition (19) mean

that for log(f) ∈ [log (ωi)− log(α), log (ωi+1) − log(β)], we have a linear regression of log JN (1/f) onto
log(f) with slope −(2Hi + 1) and intercept
log σ2

i +log KHi(ψ) and for log(f) ∈ [log (ωi+1)− log(α), log (ωi+2)− log(β)] a linear regression with slope
−(2Hi+1+1) and intercept log σ2

i+1+log KHi+1(ψ). This is a problem of detection of abrupt change on the
parameters of a linear regression, but with a transition zone for log(f) ∈ ]log (ωi+1)− log(β), log (ωi+1)− log(α)[.

Remark 4.1 Condition (19) implies that ωi+1 >
β

α
× ωi. Therefore we could only detect the frequency

changes sufficiently spaced. For instance, if we choose the Lemarié-Meyer wavelet, we get β/α = 4 which
leads to the condition ωi+1 > 4× ωi.
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In this section, we describe the estimation of the parameters and a goodness of fit test. Both of them are
based on the following assumption :

Assumption (BK) : The process Xρ is a (MK)-multiscale fractional Brownian motion. This process is

characterized by the parameters Ω∗, H∗ and σ∗ where Ω∗ = (ω∗1 , · · · , ω∗K) with H∗ = (H∗
0 , H∗

1 , . . . , H∗
K)

and σ∗ = (σ∗0 , σ∗1 , . . . , σ∗K). Moreover the following conditions are fulfilled

• ω∗i+1 >
β

α
× ω∗i for i = 1, · · · , K − 1;

• min
0≤i≤(K−1)

{(
H∗

i+1 −H∗
i

)2

+
(
σ∗i+1 − σ∗i

)2
}

> 0 and

• there exists a compact set K ⊂]0, 1[×]0,∞[ such as (H∗
i , σ∗i ) ∈ K for all i = 0, 1, · · · ,K.

4.1 Estimation of the parameters

Let Xρ be a (MK)-f.B.m. satisfying the assumption (BK) with K a known integer number. We observe
one path of the process at N discrete times, that (Xρ(0), Xρ(∆N ), · · · , Xρ(N∆N )). Let [fmin, fmax], with
0 < fmin < fmax, be the chosen frequency band (see section 5, for an example). We discretize a (slightly
modified) frequency band and compute the wavelet coefficients at the frequencies (fk)0≤k≤aN

where

fk =
fmin

β
(qN )k for k = 0, · · · , aN , qN =

(
fmax

fmin

β

α

)1/aN

and aN = N∆N .

For notational convenience , we assume here that N∆N is an integer number. By definition, we have
f0 = fmin/β and faN

= fmax/α, then, using the wavelet coefficients at the frequencies (fk)0≤k≤aN
, we

could detect all frequency changes (ω∗i ) included in the band ]fmin, fmax[. To simplify the notations, we
use the following assumption :

Assumption (C) : ω∗i ∈]fmin, fmax[ for all i = 1, . . . , K.

In this framework, the estimation of the different parameters of Xρ becomes a problem of linear regression
with a known number of changes; thus, we follow the same method as in Bai (1994), Bai and Perron
(1998), Lavielle (1999) or Lavielle and Moulines (2000) and define the estimated parameters (T̂ (N), Λ̂(N))
as the couple of vectors which minimizes the quadratic criterion :

Q(N)(T, Λ) =
K+1∑

j=0

tj+1−τN∑

i=1+tj

|Yi −Xiλj |2 , and thus

(T̂ (N), Λ̂(N)) = Argmin
{

Q(N)(T, Λ); T ∈ A(N)
K ,Λ ∈ BK

}

with

• Yi = log (JN (1/fi)), Xi = (log fi, 1) for i = 0, · · · , aN ;

• τN =
[
log(β/α)
log qN

]
, where [x] is the integer part of x.

• T = (t0, t1, · · · , tK+1) ∈ A(N)
K where

A(N)
K =

{
(t0, · · · , tK+1) ∈ INK+2; t0 = 0, tK+1 = aN + τN , tj+1 − tj > τN for j = 0, · · · ,K

}
;
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• Λ = (λ0, · · · , λK) ∈ BK where λj =
( −(2Hj + 1)

log σ2
j + log KHj (ψ)

)
and then

BK=
{

(λ0, · · · , λK) with (Hj , σ
2
j ) ∈ K for all j ∈ {0, 1, · · · ,K}

}
.

The integer τN corresponds to the number of frequencies in the transition zones and log fi+τN
= log fi +

log(β/α). Obviously, for j = 0, · · · ,K, the vector λ̂
(N)
j provides the estimators Ĥ

(N)
j of H∗

j and σ̂
(N)
j of σ∗j

by the relation λ̂
(N)
j =


 −(2Ĥ

(N)
j + 1)

log
(
(σ̂(N)

j )2
)

+ log K bH(N)
j

(ψ)


. For a given T ∈ A(N)

K , each λ̂
(N)
j is obtained

from a linear regression of (Yi) onto (Xi) for i = tj+1, · · · , tj+1−τN . Thus, with T̂ = (t̂j)0≤j≤K+1 obtained
from the minimization in T of Q(N)(T, Λ̂), we define the different estimators of the change frequencies as

ω̂
(N)
j = α fbt(N)

j
= α · fmin

β

(
fmax

fmin

β

α

) bt(N)
j
aN

for j = 1, · · · ,K. (20)

We have the following convergence :

Proposition 4.1 Let Xρ verify Assumptions (C) and (BK) with a known K, (X∆N , · · · , XN∆N ) be a
discretized path, and ψ verify Assumption (A1). Let ∆N be such as N∆N → ∞ and N(∆N )3 → 0 when
N →∞. Assume that (Ĥ(N)

i , σ̂
(N)
i ) ∈ K for all i = 0, · · · ,K. Then for all ε > 0, there exists 0 < C < ∞

such as for all large N ,

IP
(
(N∆N )1/4

∣∣∣ω̂(N)
j − ω∗j

∣∣∣ ≥ C
)
≤ ε for j = 1, · · · , K. (21)

Remark 4.2 The proof of this proposition shows a more general result, i.e. for (p, q) ∈ [3/4, 1] × [0, 1],
for ε > 0, there exists C > 0 such as

IP
(
a1−p

N

∣∣∣ω̂(N)
j − ω∗j

∣∣∣ ≥ C
)
≤ ε for j = 1, · · · ,K

with aN = (N∆N )q. For numerical considerations and convergence rate of the following estimators of the
parameters, we are going to fix now on p = 3/4 and q = 1 and then aN = N∆N .

For j = 0, · · · ,K, the natural estimates of H∗
j and σ2∗

j are given by the regression of (Yi) onto (log fi) for
i ∈ {t̂(N)

j , · · · , t̂
(N)
j+1 − τN}. But the probability that [t̂(N)

j , t̂
(N)
j+1 − τN ] ⊂ [t∗j , t

∗
j+1 − τN ] does not increase

fast enough to 1 as N → ∞, in order to obtain a sufficiently fast convergence rate for these estimators.
We address this difficulty as follows. We fix an integer number m ≥ 3 and for j = 0, · · · ,K, we consider
[Ũ (N)

j , Ṽ
(N)
j ] an interval strictly included in [t̂(N)

j , t̂
(N)
j+1 − τN ], such as

Ũ
(N)
j = t̂

(N)
j +

[
t̂
(N)
j+1 − t̂

(N)
j − τN

m + 1

]
and Ṽ

(N)
j = t̂

(N)
j + m

[
t̂
(N)
j+1 − t̂

(N)
j − τN

m + 1

]
. (22)

Then we estimate the parameters from a regression onto m points uniformly distributed in [Ũ (N)
j , Ṽ

(N)
j ]; it

provides the following estimator λ̃
(N)
j from a regression of (Yi) onto (Xi) for i ∈ {Ũ (N)

j , · · · , Ṽ
(N)
j } =

{
Ũ

(N)
j + (k − 1)

[
t̂
(N)
j+1 − t̂

(N)
j − τN

m + 1

]}

1≤k≤m

.

By this way, define

λ̃
(N)
j =

(
− (2H̃

(N)
j + 1), log σ̃2

(N)

j + log K
H̃

(N)
j

(ψ)
)′

=
(
(X̃(N)

j )′X̃(N)
j

)−1

(X̃(N)
j )′Ỹ (N)

j with





X̃
(N)
j = (log fi , 1)

i∈{Ũ(N)
j ,··· ,Ṽ (N)

j }
Ỹ

(N)
j = (Yi)i∈{Ũ(N)

j ,··· ,Ṽ (N)
j }

,
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and for all k = 1, · · · ,m, define g∗0(k) =
fmin

β

(
ω∗1

fmin

)k/(m+1)

, g∗K(k) =
ω∗K
α

(
fmax

fmin

)k/(m+1)

and

g∗j (k) =
ω∗j
α

(
αω∗j+1

βω∗j

)k/(m+1)

for all j ∈ {1, · · · ,K − 1}, .

We get the following central limit theorems for the corresponding estimators (H̃(N)
j , σ̃2

(N)

j ) :

Proposition 4.2 Under the same assumptions as in Proposition 4.1, for all j = 0, · · · ,K,

(N∆N )1/2
(
λ̃

(N)
j − λ∗j

) D−→
N→∞

N (0,Γ
λ∗j
1 ) (23)

where Γ
λ∗j
1 =

(
X∗′

j X∗
j

)−1

X∗
j Σ∗jX

∗′
j

(
X∗′

j X∗
j

)−1

, with X∗
j =

(
log g∗j (k) , 1

)
1≤k≤m

and Σ∗j = (s∗jkl )1≤k,l≤m

the following matrix :

s∗jkl = 2 ·
(
g∗j (k)g∗j (l)

)2H∗
j ·

∫

IR

(∫

IR

ψ̂

(
ξ

g∗j (k)

)
ψ̂

(
ξ

g∗j (l)

)
|ξ|−(2H∗

j +1)e−iuξdξ

)2

du

(∫

IR

∣∣∣ψ̂(u)
∣∣∣
2

|u|−(2H∗
j +1)du

)2 . (24)

Remark 4.3 Another possible choice would be to consider the regression for all the available frequencies in
the interval [Ũ (N)

j , Ṽ
(N)
j ]. The number of considered frequencies increases then with the rate aN = N∆N .

However, it does not improve significantly the convergence since the remainders of the regression are very
strongly dependent.

4.2 Goodness of fit test

It is also possible to estimate parameters H∗
j and σ∗j from an feasible (or estimated) generalized least

squares estimation (for more details, see Amemiya, chap. 6.3, 1985). Indeed, we can identify the asymptotic
covariance matrix Σ∗j for j = 0, · · · ,K : this matrix has the form Σ∗j = Σ(H∗

j , ω∗j , ω∗j+1) and, from the

previous limit theorems, Σ̂(N)
j = Σ(H̃j

(N)
, ω̂

(N)
j , ω̂

(N)
j+1) converges in probability to Σ∗j . Thus, it is possible

to determine an estimation λ
(N)
j of λ∗j with a feasible generalized least squares (F.G.L.S.) regression i.e.

by minimizing

‖ Ỹ
(N)
j − X̃

(N)
j λ ‖2bΣ(N)

j

= (Ỹ (N)
j − X̃

(N)
j λ)′

(
Σ̂(N)

j

)−1

(Ỹ (N)
j − X̃

(N)
j λ).

First, we give asymptotic behavior of λ
(N)
j =





(
−(2H

(N)
j + 1), log σ2(N)

j + log K
H

(N)
j

(ψ)
)′

(
(X̃(N)

j )′
(
Σ̂(N)

j

)−1

X̃
(N)
j

)−1

(X̃(N)
j )′

(
Σ̂(N)

j

)−1

Ỹ
(N)
j

.

Proposition 4.3 Under the same assumptions as in Proposition 4.2, for all j = 0, · · · ,K,

(N∆N )1/2
(
λ

(N)
j − λ∗j

) D−→
N→∞

N (0,Γ
λ∗j
2 ) (25)

with Γ
λ∗j
2 =

(
X∗′

j

(
Σ∗j

)−1
X∗

j

)−1

.

For j = 0, · · · ,K, the vectors Ỹ
(N)
j and X̃

(N)
j λ

(N)
j are two different estimators of the vector

(−(2H∗
j + 1) log fi + log σ2∗

j + log KH∗
i
(ψ)

)
i∈{Ũ(N)

j ,··· ,Ṽ (N)
j }.

It suggests to define the following goodness of fit test. The test statistic is a distance T (N) between those
both estimations for all j = 0, · · · , K :

T (N) = (N∆N ) ·



K∑

j=0

‖ Ỹ
(N)
j − X̃

(N)
j λ

(N)
j ‖2bΣ(N)

j


 .
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This distance is the F.G.L.S. distance between points (log fi, Yi)i∈{Ũ(N)
j ,··· ,Ṽ (N)

j } for j = 0, · · · ,K and the
(K + 1) F.G.L.S. regression lines. As a consequence, we get

Proposition 4.4 Under assumptions of Proposition 4.1, we have

T (N) D−→
N→∞

χ2((K + 1)(m− 2)). (26)

Remark 4.4 Proposition 4.4 may be explained with heuristic arguments. Remainders are turned white,
thus it is only natural for the sum of the second regression remainder squares to asymptotically form a χ2

process. The number of freedom degrees is (K + 1)(m− 2) because one loses two freedom degrees after the
twice estimation of the (K+1) vectors λ∗j (we also show that these vectors are asymptotically independent).

4.3 Estimation of the number of frequency change

Throughout the previous study, the number of frequency change, K, is assumed to be known. But the
previous test provides a way for estimating K. In fact, it can be recursively done by beginning with K = 0
and continuing till the assumption “Xρ is a (MK)-f.B.m.” is accepted. The following applications in
biomechanics provide different examples of the power of discrimination of such a procedure. However, this
estimation of the number of frequency change must be carefully applied : from numerical and heuristic
arguments, it does not seem reasonable to work with K > 2.

4.4 Procedure of identification and discussion about the choice of parameters

Thus, for identifying a (MK)-multiscale fractional (with K unknown) from a time series (X0, X∆N
, · · · , XN∆N

)
we suggest the following procedure:

1. Begin with K = 0.

2. Choose a mother wavelet ψ (and thus α and β), a frequency band [fmin, fmax] and m (see below for
these different choices).

3. Compute the different frequencies (fi)0≤i≤aN
.

4. Compute the vector (Yi)0≤i≤aN = (log JN (1/fi))0≤i≤aN .

5. Minimize Q(N)(T, Λ) and thus compute the different values of ω̂
(N)
j for j = 1, · · · , K.

6. Compute the different regression moments {Ũ (N)
j , · · · , Ṽ

(N)
j } and then the estimators λ̃

(N)
j (for j =

0, · · · ,K).

7. Compute the different matrix Σ̂(N)
j and then λ

(N)
j (for j = 0, · · · ,K).

8. Compute T (N) and compare its value to the 95%-quantile of a χ2((K + 1)(m − 2)). If the test is
rejected then go back to step 2. with K = K + 1.

How to chose the function ψ and the parameters fmin, fmax and m ?

1. Choice of ψ : The mother wavelet ψ has to verify Assumptions (A1) but as we say previously
it is not mandatory to associate this function to orthogonality properties. However, the Lemarié-
Meyer wavelet is a natural choice with good numerical properties of asymptotic decreasing but a
too large ratio β/α which implies a too large transition zone of frequencies. The function ψ can
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also be deduced from an arbitrary construction of its Fourier transform ψ̂; for instance, we propose

ψ̂1(λ) = exp
( −1

(|λ| − α)(β − |λ|)
)

1α≤|λ|≤β and the function ψ2 built from a translation of the Fourier

transform of the Lemarié-Meyer function to [−2π,−π]∪ [π, 2π] (thus the ratio is now β/α = 2). The
results obtained from those functions ψ1 and ψ2 are essentially the same than with the Lemarié-
Meyer mother function, they appear more precise for the detection of frequency changes ω∗j (because
log β/α and thus the transition band, could be as small as wanted) and less precise for the estimation
of parameters H∗

j (because ψ1 and ψ2 are not concentrated as well around 0).

2. Choice of fmin and fmax : (we assume here that the frequencies are given in the inverse of
(X1, X2 · · · ) time unity). The choice of fmin and fmax is first driven by the selection of a frequency

band inside which the process has to be studied; the inspected frequency band is then [
fmin

β
,
fmin

α
].

Secondly, N × fmin

β
should be large enough for computing IN (

β

fmin
) in (9). Formally one only needs

to have N × fmin

β
≥ 1 but numerically N × fmin

β
≥ 10 seems to be necessary to use correctly the

central limit theorem. Finally, the discretization problem implies that fmax cannot be too large

for providing a good estimation of dXρ(
α

fmax
, k∆N ) by eXρ(

α

fmax
, k∆N ). In practice

fmax

α
≤ 1

∆N
appears as a minimal condition.

3. Choice of m : Formally, m could be chosen such as 3 ≤ m < minj(t∗j+1 − τN − t∗j ). Theoretically,
the larger the m, the closer to 1 the power of the test. But numerical considerations imply that if m

is too large then the different matrix Σ̂(N)
j are extremely correlated and the quality of the test is very

dependent to the quality of the different estimations of λ̂∗j . As a consequence, we chose 5 ≤ m ≤ 10.

5 Applications in Biomechanics

We apply our statistics to different trajectories with the following parameters :

• N = 6000 and ∆N = 1/20.

• The choice of the frequency band is fmin = 0.8 and fmax = 12.5 which corresponds to the band
[0.16, 2.5] in Hertz and a detection frequency band [0.02, 1.2] Hz (with the Lemarié-Meyer wavelet).

• m = 5.

First, we study the Y-trajectory for the 0cm clearance and 0degree angle. Here there is the double loga-
rithm plotting (log JN (fk) by log fk ) of this trajectory :
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Figure 4 : The double logarithm plotting of the variance of wavelet coefficients of Y-trajectory (0cm,
0degree) and and its corresponding regression lines

In figure 4, we observe two different bands of linearity ' [0.02, 0.08] Hz (= [
fmin

β
,
ω̂

(N)
1

β
]) and ' [0.30, 1.2]

Hz (= [
ω̂

(N)
1

α
,
fmax

α
]) for the Y-trajectory, those two bands are spaced by a frequency band of length

' 2 log 2 as expected by theoretical results. The estimation of the frequency change (from our algorithm)
is

ω̂
(N)
1 ' 0.61 Hz.

We also observe for this graph the beginning of a change of behavior for low and high frequencies (see the
previous explanations). For the Y-trajectory, we obtain the following different estimators of H∗

0 and H∗
1 :

Ĥ
(N)
0 ' 0.29 H̃

(N)
0 ' 0.32 H

(N)
0 ' 0.32

Ĥ
(N)
1 ' 0.37 H̃

(N)
1 ' 0.39 H

(N)
1 ' 0.39

Finally, the value of the test statistic is :

T (N) ' 3.7 < χ2
95%(6) ' 12.6,

and thus the hypothesis “the Y-trajectory is a (M1)-m.f.B.m.” is accepted. Moreover, the hypothesis “the
Y-trajectory is a (M0)-m.f.B.m.”, is rejected because then T (N) ' 42.4 with Ĥ(N) ' 0.73, H̃(N) ' 0.82
and H(N) ' 0.76. The modelling by a (M1)-m.f.B.m. rather than by a f.B.m. seems completely justified.

The following figure represents the double logarithm plotting for a trajectory of a f.B.m obtained from a
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simulation with the circulant matrix algorithm, with a Hurst parameter H = 0.3 :
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Figure 5 : The double logarithm plotting of the variance of wavelet coefficients of Y-trajectory (0 cm 0
degree) and its corresponding regression lines

In figure 5, we observe the linearity of the graph for the f.B.m trajectory for frequencies in the band
' [0.02, 1.2] Hz. Moreover, the estimation of H is Ĥ(N) ' 0.27, close to the theoretical value H∗ = 0.3 and
the hypothesis “the Y-trajectory is a f.B.m.” is accepted by the test (as a consequence, for this trajectory,
the modelling is without frequency change and Ĥ(N) provides an estimator of H∗).

We also study this Y-trajectory with two different mother “wavelets” (as described previously) : ψ1 such as

ψ̂1(λ) = exp
(
− 1

(|λ| − 5)(10− |λ|)
)

15≤|λ|≤10 (thus α = 5 and β = 10) and ψ2 such as ψ̂2(λ) = ψ̂(|λ| − 4π

3
)

(thus α = 2π and β = 4π) with ψ the Lemarié-Meyer mother wavelet. The following figure shows the
results of this study :
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Figure 6 : The double logarithm plotting of the variance of wavelet coefficients of the Y-trajectory and
its corresponding regression lines (left ψ1, right, ψ2)

The estimations of ω∗1 are ω̂
(N)
1 (1) ' 0.55 Hz with ψ1 and ω̂

(N)
1 (2) ' 0.52 Hz with ψ2, very close to

the previous estimation ω̂
(N)
1 ' 0.61 Hz obtained with the Lemarié-Meyer mother wavelet ψ. On the

other hand, the estimations of H∗
0 and H∗

1 are a little bit different from those obtained with ψ : with
ψ1, H

(N)
0 ' 0.42 and H

(N)
1 ' 0.51, with ψ2, H

(N)
0 ' 0.43 and H

(N)
1 ' 0.49. It appears that when the

transition band is small , the estimation of log I1 is less precise. So, ψ1 could be prefer for the estimation
of ω∗1 and the Lemarié-Meyer mother wavelet ψ for estimating parameters H∗

0 and H∗
1 .

Finally, Figure 7 provides a comparison of the previous graphs and, first, the graph of the X-trajectory (for
the 0 cm clearance and 0 degree angle), and second, the graphs of Y-trajectory with different clearances
and angles between the feet, respectively (2cm, 0 degree), (10cm, 15 degree) and (20cm, 40 degree) (the
mother wavelet is ψ1) :
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Figure 7 : The double logarithm plotting of the variance of wavelet coefficients (up and left, X-trajectory
(0cm, 0 degree), up and right, Y-trajectory (2cm, 0 degree), down and left Y-trajectory (10cm, 15 degree)
and down and right Y-trajectory (20cm, 40 degree))

We observe the “perfect” linearity of the X-trajectory log-log plot and find Ĥ ' 0.51 : the X-trajectory
seems to be a classical Brownian motion trajectory. The test justifies the (M1)-m.f.B.m. modelling for
the Y-trajectory (2cm, 00) with T (N) ' 6.7 < χ2

95%(6) ' 12.6) and reject the hypothesis “the Y-trajectory
(2cm, 00) is a f.B.m “ (then Ĥ(N) ' 0.78 and T (N) ' 28.3 > χ2

95%(3) ' 7.81); we find a frequency change
ω̂

(N)
1 ' 1.01 Hz and H

(N)
0 ' 0.60 (for low frequencies), H

(N)
1 ' 0.15 (for high frequencies). Both other

Y-trajectory, respectively, (10cm, 15 degree) and (20cm, 40 degree), accept the f.B.m. modelling with,
respectively, H̃(N) ' 0.55 and H̃(N) ' 0.53.

In conclusion, all these results allow us a to give new interpretations on the upright position. First,
the X-trajectory (the fore-aft direction) seems to be a white noise. The upright position appears as auto-
stabilized in this direction. For the medio-lateral direction (Y-trajectory), when the clearance and the
angle between the feet are small, two different mechanical behavior take place at the same time. The same
auto-stabilization that for the fore-aft direction for high frequencies, and another type of biomechanical
control for low frequencies. The change of behavior is between 0.5 and 1 Hz. But if the clearance or
the angle between the feet increase, the second type of behavior (for low frequencies) seems to disappear,
because the upright position is better stabilized. A good knowledge of these behaviors and their can allow
a better detection of certain pathologies and to help in their cure.

A Proofs

A.1 Proofs of section 3

Proof. [Property 3.1] First, we prove that for all m ∈ IN , and bN such as (TN − bN∆N ) → ∞ and
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bN∆N →∞ when N →∞,

IE
(
d2

Xρ
(a, bN∆N )

)
=IE

(
1√
a

∫ TN

0

ψ(
t

a
−bN∆N )Xρ(t)dt

)2

+O
(

1
TN−bN∆N

+
1

bN∆N

)
. (27)

We have:

IE
(
d2

Xρ
(a, bN∆N )

)
= IE

(
1√
a

∫ TN

0

ψ(
t

a
− bN∆N )Xρ(t)dt

)2

+ ..

..
2
a
IE

(∫

IR

∫ ∞

TN−abN∆N

ψ(
u

a
)ψ(

u′

a
)Xρ(u + abN∆N )Xρ(u′ + abN∆N )dudu′

)
+ ..

..
2
a
IE

(∫

IR

∫ abN∆N

−∞
ψ(

u

a
)ψ(

u′

a
)Xρ(u + abN∆N )Xρ(u′ + abN∆N )dudu′

)
.

But for all m ∈ IN , for all u ∈ IR,
∫ ∞

TN−abN∆N

∣∣∣∣ψ(
u′

a
)IE (Xρ(u + abN∆N )Xρ(u′ + abN∆N ))

∣∣∣∣ du′ ≤

C2|u + abN∆N |
∫ ∞

TN−abN∆N

u′m+1

∣∣∣∣ψ(
u′

a
)
∣∣∣∣

1
u′m

|u′ + abN∆N |
u′

du,

because it exists C > 0 such as |IEXρ(t)Xρ(t′)| ≤ C|tt′|for |t| > 1 and |t′| > 1. Thus,

IE

(∫

IR

∫ ∞

TN−abN∆N

ψ(
u

a
)ψ(

u′

a
)Xρ(u + abN∆N )Xρ(u′ + abN∆N )dudu′

)
≤

≤ C ′
1

(TN − abN∆N )m

∫

IR

∣∣∣ψ(
u

a
)
∣∣∣ |u + abN∆N |du

≤ C ′′
1

(TN − abN∆N )m
,

when TN − abN∆N →∞, from the first condition of Assumption (A1), and with C ′ > 0 and C ′′ > 0. The
second part of the integral (between −∞ and −abN∆N ) is obtained from the same trick. Thus, (27) is
proved. We just have now to compared the integral and the sum. We use the relation (27) and:

IE

(
1√
a

∫ TN

0

ψ(
t

a
− k∆N )Xρ(t)dt

)2

= IE

(
∆N√

a

N∑
p=0

ψ(
p∆N

a
− k∆N )Xρ(p∆N )

)2

+O(∆N ),

from a classical comparison of a Riemann sum and integral and because the function IEXρ(t)Xρ(t′) is C1

on IR2 except on the diagonal line t = t′. It finishes the proof of the first part of Property 3.1.
The second part of Property 3.1 is a consequence of the first part with a good choice of bN and m ∈ IN .

A.2 Proofs of section 4

Proof. [Proposition 4.1]

In this proof, we generalize the number of chosen frequencies by considering aN = (N∆N )q, with q >

0.
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For a given N , denote T ∗ = (t∗0 = 0, t∗1, · · · , t∗K , t∗K+1 = aN ) such as :

ft∗j <
ω∗j
α
≤ ft∗j +1, for all j = 1, . . . , K

and for T = (0, t1, · · · , tK , aN ) ∈ A(N)
K , we denote Z

(N)
i =

√
N∆N (Yi − log I1(1/fi)), Y]tj ,tj+1] = (Ytj+1, · · · , Ytj+1−τN

)′,
X]tj ,tj+1] = (log ftj+i, 1)1≤i≤(tj+1−tj), Z

(N)
]tj ,tj+1]

= (Z(N)
tj+1, · · · , Z

(N)
tj+1−τN

)′.

First step : We would like to prove : ω̂
(N)
j

P−→
N→∞

ω∗j for all j = 1, . . . ,K.

Denote Q
(N)
∗ = Q(N)(t∗, Λ̂(t∗)) where Λ̂(t∗) is obtained from a linear regression of (Yi) on (log fi) for

i = t∗j +1, · · · , t∗j+1−τN . Let ε > 0 and ‖ T − T ′ ‖∞= max
j∈{1,··· ,K}

|tj − t′j | for T = (0, t1, · · · , tK , aN ) ∈ A(N)
K

and T ′ = (0, t′1, · · · , t′K , aN ) ∈ A(N)
K . Then, we get,

IP
(
‖ T̂ − t∗ ‖∞≥ εaN

)
≤ IP

(
min

T∈VεaN

Q(N)(T, Λ̂(T )) ≤ Q
(N)
∗

)
,

where VεaN =
{

T ∈ A(N)
K , ‖ T − t∗ ‖∞≥ εaN

}
. We want to show that for all T ∈ VεaN ,

Q
(N)
∗ = o(Q(N)(T, Λ̂(T ))). In fact,

Q
(N)
∗ =

1
N∆N

K+1∑

j=0

(Z(N)
]t∗j ,t∗j+1]

)′
[
Id−X]t∗j ,t∗j+1]

(
X ′

]t∗j ,t∗j+1]
X]t∗j ,t∗j+1]

)−1

X ′
]t∗j ,t∗j+1]

]
Z

(N)
]t∗j ,t∗j+1]

≤ 1
N∆N

K+1∑

j=0

(Z(N)
]t∗j ,t∗j+1]

)′Z(N)
]t∗j ,t∗j+1]

≤ 1
N∆N

(Z(N)
[1,aN ])

′Z(N)
[1,aN ].

From Proposition 3.1, we deduce

1
aN

(Z(N)
[1,aN ])

′Z(N)
[1,aN ]

D−→
N→∞

IZ =
∫ 1

0

Z2

(
β

fmin

(
αfmin

βfmax

)u)
du, (28)

which is a positive and IL∞ random variable because Z is a continuous Gaussian process. Afterward, for
a sequence (ψk)k ∈ IRIN and a sequence of random variables (ξk)k∈IN , we will write ξN = OP (ψN ) as
N →∞, if for all ε > 0, there exists c > 0, such as ,

P
(
|ξN | ≤ c · ψN

)
≥ 1− ε,

for all sufficiently large N . Here, we obtain :

Q
(N)
∗ = OP

(
aN

N∆N

)
. (29)

Now, let T ∈ VεaN , we want a lower bound of Q(N)(T, Λ̂(T )). We use the following decomposition

Q(N)(T, Λ̂(T )) =
K+1∑

j=0

tj+1−τN∑

i=tj+1

[Yi − log I1(1/fi)]
2 +

[
Xiλ̂k − log I1(1/fi)

]2

+

2 [Yi − log I1(1/fi)]×
[
Xiλ̂k − log I1(1/fi)

]

= Q1 + Q2 + Q3.

Then :
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1. Since Q1 =
1

N∆N

K+1∑

j=0

(Z(N)
]tj ,tj+1]

)′Z(N)
]tj ,tj+1]

, as previously we get

Q1 = OP

(
aN

N∆N

)
. (30)

2. Let τ =
(

log
(

βfmax

αfmin

))−1

min
j=1,··· ,K

{
log

(
αω∗j+1

βω∗j

)}
. Then, for all j ∈ {0, 1, · · · ,K}, t∗j+1 − τN ≥

t∗j + τaN . Since T ∈ VεaN
, we have η = min{ε, τ , log(β/α)} > 0 and there exists an integer

j ∈ {0, · · · ,K + 1} for which there are no estimated abrupt change in the interval [t∗j − ηaN , t∗j ] or
[t∗j −τN , t∗j −τN +ηaN ]. Thus there exists k ∈ {0, · · · ,K +1} verifying [t∗j −ηaN , t∗j ] ⊂ [tk, tk+1−τN ]
(we follow here a similar proof than Bai and Perron in Lemma 2, p 69) and

Q2 ≥
t∗j∑

i=t∗j−ηaN+1

|Xiλ̂k − log I1(1/fi)|2

≥
t∗j∑

i=t∗j−ηaN+1

∣∣∣∣A(Ĥ(N)
k , σ̂

(N)
k ) +

i

aN
·B(Ĥ(N)

k , σ̂
(N)
k )− g

(
i

aN

)∣∣∣∣
2

, (31)

with :

• A(H, σ) = log
(
σ2 ·KH(ψ)

)
− (2H + 1) · log

(
fmin

β

)
for all (H, σ) ∈ K;

• B(H,σ) = −(2H + 1) · log
(

βfmax

αfmin

)
for all (H,σ) ∈ K;

• g

(
i

aN

)
= log

(
I1(1/fi)

)
= log

(
I1

(
β

fmin

(
βfmax

αfmin

)−i/aN
))

.

Since for all (H, σ) ∈ K, the function x 7→ L(H,σ)(x) =
(
A(H, σ) + x ·B(H, σ)− g(x)

)2

is an in-
finitely derivable function on IR, we know from the theory of Riemann sums that :

uN (H,σ) =
1

aN

t∗j∑

i=t∗j−ηaN+1

∣∣∣∣A(H, σ) +
i

aN
·B(H,σ)− g

(
i

aN

)∣∣∣∣
2

−→
N→∞

u(H, σ) =
∫ s∗j

s∗j−η

(A(H,σ) + x ·B(H,σ)− g (x))2 dx,

with s∗j = log
(

ω∗j
fmin

)(
log

(
αfmax

βfmin

))−1

= lim
N→∞

t∗j
aN

. Moreover, the sequence (uN (H,σ))N con-

verges uniformly to u(H, σ) because for N large enough

sup
(H,σ)∈K

|uN (H, σ)− u(H, σ)| ≤
(

1
a2

N

+ η

∣∣∣∣s∗j −
t∗j
aN

∣∣∣∣
)
· sup

(H,σ)∈K

{
sup

0≤x≤(s∗K+1)

∣∣∣∣
∂L(H,σ)

∂x
(x)

∣∣∣∣
}

−→
N→∞

0,

since K is a compact set of [0, 1]×]0,∞[ and thus sup
(H,σ)∈K

{
sup

0≤x≤(s∗K+1)

∣∣∣∣
∂L(H,σ)

∂x
(x)

∣∣∣∣
}

< ∞. As a

consequence, from (31) and since we assumed that (Ĥ(N)
i , σ̂

(N)
i ) ∈ K for all i = 0, · · · ,K, for some

sufficiently small, fixed ξ > 0 and for all sufficiently large N ,

Q2 ≥ aN

(∫ s∗j

s∗j−η

(
A(Ĥ(N)

k , σ̂
(N)
k ) + x ·B(Ĥ(N)

k , σ̂
(N)
k )− g (x)

)2

dx− ξ

)
. (32)
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But it is impossible that there exists (a, b) ∈ IR2 such as g(x) = a + b · x for all x ∈ [s∗j − η, s∗j ], i.e.,

I1

(
c1 · ec2·x

)
= ea · eb·x for all x ∈ [s∗j − η, s∗j ] with c1 =

β

fmin
, c2 = log

(
αfmin

βfmax

)
, which can also

be written as :

I1(x) = a1 · xb1 for all x ∈ [α/ω∗j , α/ω∗j + η′], (33)

with η′ > 0 and (a1, b1) ∈ IR2. Indeed, assume now (33) is true. But, for all x ∈ [α/ω∗j , α/ω∗j + η′],

I1(x) = 2

(
σ∗2j−1 · x2H∗

j−1+1

∫ x·ω∗j

α

|ψ̂(u)|2
u2H∗

j−1+1
du + σ∗2j · x2H∗

j +1

∫ β

x·ω∗j

|ψ̂(u)|2
u2H∗

j +1
du

)
.

Then
∂nI1

∂xn
(α/ω∗j ) = a1 · ∂nxb

1

∂xn
(α/ω∗j ) for n = 0, 1, what implies that b1 = (2H∗

j + 1) and a1 =

2σ∗2j KH∗
j
(ψ) (here, we use the equality ψ̂(α) = 0). Thus, for all x ∈ [α/ω∗j , α/ω∗j + η′],

σ∗2j−1 · x2H∗
j−1+1

∫ x·ω∗j

α

|ψ̂(u)|2
u2H∗

j−1+1
du = σ∗2j · x2H∗

j +1

∫ x·ω∗j

α

|ψ̂(u)|2
u2H∗

j +1
du,

=⇒
∫ ω∗j

α/x

|ψ̂(x · y)|2
(

σ∗2j−1

y2H∗
j−1+1

− σ∗2j

y2H∗
j +1

)
dy = 0,

and hence
{

σ∗2j−1 = σ∗2j

H∗
j−1 = H∗

j
. But this condition is impossible from Assumption (BK) and consequently

there is no (a, b) ∈ IR2 such as g(x) = a + b · x for all x ∈ [s∗j − η, s∗j ].

The function g belongs to the Hilbert space IL2([s∗j − η, s∗j ]; dx). Since L = {A + B · x, x ∈
[s∗j − η, s∗j ], (A,B) ∈ IR2} is a closed linear subspace of IL2([s∗j − η, s∗j ]; dx), there exits a distance
between g and L in IL2([s∗j − η, s∗j ]; dx), i.e. there exists (Ã, B̃) ∈ IR2 such as

∫ s∗j

s∗j−η

(
Ã + B̃ · x− g(x)

)2

dx = inf
(A,B)∈IR2

∫ s∗j

s∗j−η

(A + B · x− g(x))2 dx = C > 0,

because g /∈ L. Then, by choosing ξ such as 0 < ξ < C/2, the inequality (32) implies :

Q2 ≥ C

2
· aN (34)

for all sufficiently large N , with C a real positive number only depending on η, s∗j , H∗
j−1, H∗

j , σ∗j−1,
σ∗j and ψ.

3. The previous evaluations of Q1 and Q2 provide an upper bound of Q3.We get

Q3 ≤ 2 (Q1)
1/2

(
K+1∑

k=0

tk+1−τN∑

i=tk+1

(Xiλ̂k − log I1(1/fi))2
)1/2

≤ 2 (Q1)
1/2 ×

(
aN · sup

fmin≤f≤fmax

{
2 sup

λ∈K
{(log f, 1) · λ)2 + 2 log2 I1(1/f)

})1/2

,

= OP

(
aN√
N∆N

)
. (35)

We deduce from (30), (34) and (35) that Q1 = o(Q2) and Q3 = o(Q2), which implies

IP

(
min

T∈VεaN

Q(N)(T, Λ̂(T )) ≥ C

4
· aN

)
−→

N→∞
1 and thus

lim
N→∞

IP
(
‖ T̂ − T ∗ ‖∞≥ εaN

)
= 0 =⇒ ω̂

(N)
i

P−→
N→∞

ω∗i .
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Second step : For j = 1, · · · ,K, we want to prove that if 3/4 ≤ p ≤ 1 and 0 ≤ q ≤ 1, for all ε > 0, there
exists 0 < C < ∞ such as for sufficiently large N , IP

(
a1−p

N

∣∣∣ω̂(N)
j − ω∗j

∣∣∣ ≥ C
)
≤ ε.

Mutatis mutandis, we follow the same method as in the proof of the convergence in probability. Now,

let 0 < p < 1, 0 < η =
1
2

min{τ , log(β/α)} and consider minT∈W η

Ca
p
N

Q(N)(T, Λ̂(T )) with

W η
Cap

N
=

{
T ∈ A(N)

K , Cap
N ≤‖ T − t∗ ‖∞≤ ηaN

}
.

Then, as previously, for T ∈ W η
Cap

N
and N large enough, it exists j ∈ {1, · · · ,K} such as

tj + Cap
N ≤ t∗j < tj+1 − τN (36)

(the following proof is even if one considers the alternative t∗j ≤ tj − Cap
N ). Then

Q(N)(T, Λ̂(T )) ≥
tj+1−τN∑

i=t∗j +1

(Yi − log I1(1/fi))2 + (Xiλ̂j − log I1(1/fi))2 +

+2(Yi − log I1(1/fi))(Xiλ̂j − log I1(1/fi))

≥ Q′
1 + Q′2 + Q′

3.

1. First, we have again,

Q′
1 = OP

(
aN

N∆N

)
. (37)

2. Secondly, Q′2 =
tj+1−τN∑

i=t∗j +1

(Xiλ̂j − log I1(1/fi))2. But we know log I1(1/fi) = Xiλ
∗
j for i ∈ {t∗j +

1, · · · , tj+1 − τN}. Moreover, for ai = 1/fi, i ∈ {tj + 1, · · · , t∗j} and N large enough, ai ' α/ω∗i , and

I1(ai) = I1

(
α

ω∗j

)
+

(
ai − α

ω∗j

)
I ′1

(
α

ω∗j

)
+O

(
ai − α

ω∗j

)2

.

But I1(ai) = 2

(
σ∗2j−1a

2H∗
j−1+1

i

∫ aiω
∗
j

α

|ψ̂(u)|2
u2H∗

j−1+1
du + σ∗2j a

2H∗
j +1

i

∫ β

aiω∗j

|ψ̂(u)|2
u2H∗

j +1
du

)
and

I ′1
(

α

ω∗j

)
= 2σ∗2j KH∗

j
(ψ)(2H∗

j + 1)

(
α

ω∗j

)2H∗
j

; thus for i ∈ {tj + 1, · · · , t∗j},

log I1(1/fi) = Xiλ
∗
j +

[
(2H∗

j + 1)
fmin

β
log

(
βfmax

αfmin

)]
·
(

t∗j − i

aN

)
+O

(
t∗j − i

aN

)2

. (38)

Then, with λ̂j = (âj , b̂j)′, one gets for i ∈ {t∗j + 1, · · · , tj+1 − τN},
(
Xiλ̂j − log I1(1/fi)

)
= (log fi − logf)(âj − a∗j ) + Z, (39)

XXX indicates the empirical mean of XXX between tj + 1 and tj+1 − τN . Thus,

Q′
2 ≥

tj+1−τN∑

i=t∗j +1

((
log fi − log f

)
(âj − a∗j ) +

1√
N∆N

Z

)2

. (40)
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We also have :

âj =

tj+1−τN∑

i=tj+1

(
log fi − log f

) (
Yi − Y

)

tj+1−τN∑

i=tj+1

(
log fi − log f

)2

=

tj+1−τN∑

i=tj+1

(
log fi − log f

)(
log I1(1/fi) +

1√
N∆N

Z
(N)
i − log I1 − 1√

N∆N

Z

)

tj+1−τN∑

i=tj+1

(
log fi − log f

)2

,

and thus,

âj − a∗j =

t∗j∑

i=tj+1

(
log fi − log f

) (
log I1(1/fi)−X ′

iλ
∗
j

)

tj+1−τN∑

i=tj+1

(
log fi − log f

)2

+
1√

N∆N

tj+1−τN∑

i=tj+1

(
log fi − log f

) (
Z

(N)
i − Z

)

tj+1−τN∑

i=tj+1

(
log fi − log f

)2

. (41)

From the definition of (log fi),

tj+1−τN∑

i=tj+1

(
log fi − log f

)2 '
[

1
12

log
(

βfmax

αfmin

)]
(tj+1 − τN − tj) = O(aN ). (42)

Expansions (42) and (38) imply there exist two constants C1 > 0 and C2 > 0 such as for N large enough :

C1

(
t∗j − tj

aN

)2

≤

∣∣∣∣∣∣∣∣∣∣∣∣

t∗j∑

i=tj+1

(
log fi − log f

) (
log I1(1/fi)−X ′

iλ
∗
j

)

tj+1−τN∑

i=tj+1

(
log fi − log f

)2

∣∣∣∣∣∣∣∣∣∣∣∣

≤ C2

(
t∗j − tj

aN

)2

.

Moreover

1√
N∆N

tj+1−τN∑

i=tj+1

(
log fi − log f

) (
Z

(N)
i − Z

)

tj+1−τN∑

i=tj+1

(
log fi − log f

)2

= OP

(
1√

N∆N

)
.

Thus, we deduce from (41) that :

C1

(
t∗j − tj

aN

)2

+OP

(
1√

N∆N

)
≤

∣∣âj − a∗j
∣∣ .
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As a consequence, for (p, q) such as 4q(1−p) ≤ 1 (for instance, p = 3/4 and q = 1), then
(

t∗j − tj

aN

)2

·
√

N∆N ≥ C2,

and thus for all ε > 0, for N sufficiently large, we can chose C > 0 such as :

IP

(
C2

1

2
(
log fi − log f

)2
(

t∗j − tj

aN

)4

≤ ((
log fi − log f

)
(âj − a∗j )

)2

)
≥ 1− ε. (43)

Now, from (40), (43) and with IP (tj+1 − τN − t∗j ≥
η

2
aN ) −→

N→∞
1, for (p, q) ∈ [3/4, 1]× [0, 1], for all ε > 0,

for N sufficiently large, we can also chose C > 0 such as :

IP


C2

1

4

(
t∗j − tj

aN

)4

·
tj+1−τN∑

i=t∗j +1

(
log fi − log f

)2 ≤ Q′2


 ≥ 1− ε,

=⇒ IP
(
C4 · C2 · a4p−3

N ≤ Q′
2

)
≥ 1− ε, (44)

with C2 > 0 a real number not depending on C, N and ε.

3. Finally, from the classical bound of Q′3, we obtain,

Q′
3 ≤ 2 · (Q′

2)
1/2 · (Q′

1)
1/2

.

But, following a similar method as previously, from (43 one can find a upper-bound for Q′2, i.e. for
(p, q) ∈ [3/4, 1]× [0, 1], for all ε > 0, for N sufficiently large, we can also chose C > 0 such as :

IP
(
Q′

2 ≤ C4 · C3 · a4p−3
N

)
≥ 1− ε,

with C3 > 0 a real number not depending on C, N and ε. Thus, for (p, q) ∈ [3/4, 1]× [0, 1], for all ε > 0,
we can also chose C > 0 such as :

IP

(
Q′

3 ≤ C2 · C4 · a2p−2
N√
N∆N

)
≥ 1− ε, (45)

with C4 > 0 a real number not depending on C and N .

Now, from (37), (44) and (45), one deduces that for (p, q) ∈ [3/4, 1] × [0, 1], for all ε > 0, for N suf-
ficiently large, we can chose C > 0 sufficiently large such as :

IP


 min

T∈W η

Ca
p
N

Q(N)(T, Λ̂(T )) ≥ C4 · C2

2
· a4p−3

N


 ≥ 1− ε.

and thus like Q
(N)
∗ = OP

(
aN

N∆N

)
from (29),

IP


 min

T∈W η

Ca
p
N

Q(N)(T, Λ̂(T )) ≤ Q
(N)
∗


 ≤ ε,

that leads to IP
(
a1−p

N

∣∣∣ω̂(N)
j − ω∗j

∣∣∣ ≥ C
)
≤ ε for sufficiently large C and N .

Proof. [Proposition 4.2] From Proposition 4.1, we deduce that ∀j = 0, · · · ,K,

IP
(
[Ũ (N)

j , Ṽ
(N)
j ] ⊂ [t∗j , t

∗
j+1 − τN ]

)
−→

N→∞
1.
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Denote A
(N)
j the event [Ũ (N)

j , Ṽ
(N)
j ] ⊂ [t∗j , t

∗
j+1 − τN ]. Then, ∀j = 0, · · · ,K and ∀(x, y) ∈ IR2,

IP
(√

N∆N

(
λ̃

(N)
j − λ∗j

)
∈]−∞, x]×]−∞, y]

)

= IP
(
A

(N)
j

)
× IP

(√
N∆N

(
λ̃

(N)
j − λ∗j

)
∈]−∞, x]×]−∞, y] | A

(N)
j

)
+

+ IP
(
A

(N)
j

)
× IP

(√
N∆N

(
λ̃

(N)
j − λ∗j

)
∈]−∞, x]×]−∞, y] | A

(N)
j

)
.

Now, since IP
(√

N∆N

(
λ̃

(N)
j − λ∗j

)
∈]−∞, x]×]−∞, y] | A

(N)
j

)
≤ 1 and IP

(
A

(N)
j

)
= 1− IP

(
A

(N)
j

)
, we

obtain :

IP
(
A

(N)
j

)
· IP

(√
N∆N

(
λ̃

(N)
j − λ∗j

)
∈]−∞, x]×]−∞, y] | A

(N)
j

)

≤ IP
(√

N∆N

(
λ̃

(N)
j − λ∗j

)
∈]−∞, x]×]−∞, y]

)

≤ IP
(√

N∆N

(
λ̃

(N)
j − λ∗j

)
∈]−∞, x]×]−∞, y] | A

(N)
j

)
+ 1− IP

(
A

(N)
j

)
. (46)

Since ω̂
(N)
j

P−→
N→∞

ω∗j and ω̂
(N)
j+1

P−→
N→∞

ω∗j+1, therefore (ω̂(N)
j , ω̂

(N)
j+1)

P−→
N→∞

(ω∗j , ω∗j+1), we have (fk)
k∈{Ũ(N)

j ,··· ,Ṽ (N)
j }

P−→
N→∞

(g∗j (k))1≤k≤m

and X̃
(N)
j

P−→
N→∞

X∗
j . Thus, from Proposition 3.2 and central limit theorem (17), for all (xk)1≤k≤m ∈ IRm,

we have

IP

(√
N∆N

(
Ỹ

(N)
j − X̃

(N)
j λ∗j

)
∈

m∏

k=1

]−∞, xk] | A
(N)
j

)
− IP

(
Z̃j ∈

m∏

k=1

]−∞, xk] | A
(N)
j

)
−→

N→∞
0,

with Z̃j
D∼ Nm(0, Σ∗j ) and Σ∗j =

(
cov

(
Z

( 1
g∗j (k)

)
, Z

( 1
g∗j (l)

)))

1≤k,l≤m

(it explains the expression (24) of

Σ∗j ). From the equality λ̃
(N)
j =

(
(X̃(N)

j )′X̃(N)
j

)−1

(X̃(N)
j )′Ỹ (N)

j , we deduce that for all (x, y) ∈ IR2, with

ξ̃j
D∼ N2(0, Γ

λ∗j
1 ) and Γ

λ∗j
1 =

(
X∗′

j X∗
j

)−1

X∗
j Σ∗jX

∗′
j

(
X∗′

j X∗
j

)−1

,

IP
(√

N∆N

(
λ̃

(N)
j − λ∗j

)
∈]−∞, x]×]−∞, y] | A

(N)
j

)
− IP

(
ξ̃j ∈]−∞, x]×]−∞, y] | A

(N)
j

)
−→

N→∞
0. (47)

We also have :

IP
(
ξ̃j ∈]−∞, x]×]−∞, y]

)
+ IP

(
A

(N)
j

)
− 1 ≤

≤ IP
(
ξ̃j ∈]−∞, x]×]−∞, y] | A

(N)
j

)
≤

IP
(
ξ̃j ∈]−∞, x]×]−∞, y]

)

IP
(
A

(N)
j

) . (48)

Now, as IP
(
A

(N)
j

)
−→

N→∞
1, from (46), (47) and (48), we deduce that for all (x, y) ∈ IR2 :

IP
(√

N∆N

(
λ̃

(N)
j − λ∗j

)
∈]−∞, x]×]−∞, y]

)
−→

N→∞
IP

(
ξ̃j ∈]−∞, x]×]−∞, y]

)
,

that achieves the proof.

Proof. [Proposition 4.3] First, from the expression of each skl given in (24) and with Mm(IR) the set
of real m-by-m matrix, the function Σ : (H, u, v) 7→ Σ(H, u, v) ∈ Mm(IR) is a continuous (and therefore
measurable) function of (H,u, v) for H in a compact set included in ]0, 1[ and (u, v) ∈]fmin, fmax[2. For
all j = 0, · · · ,K, we have :
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1. from Assumptions (BK) and (C), (H̃j
(N)

, σ̃
(N)
j ) ∈ K and (ω̂(N)

j , ω̂
(N)
j+1) ∈]fmin, fmax[2;

2. from (21) and (23), H̃j
(N) P−→

N→∞
H∗

j , ω̂
(N)
j

P−→
N→∞

ω∗j , ω̂
(N)
j+1

P−→
N→∞

ω∗j+1 and therefore

(H̃j
(N)

, ω̂
(N)
j , ω̂

(N)
j+1)

P−→
N→∞

(H∗
j , ω∗j , ω∗j+1).

As a consequence, Σ̂(N)
j = Σ(H̃j

(N)
, ω̂

(N)
j , ω̂

(N)
j+1)

P−→
N→∞

Σ∗j , for all j = 0, · · · ,K, and since Σ(H,u, v) is an

invertible covariance matrix for all (H, u, v) ∈]0, 1[×]fmin, fmax[2,

(
Σ̂(N)

j

)−1 P−→
N→∞

(
Σ∗j

)−1

, for all j = 0, · · · , K. (49)

Secondly, denote





M̃
(N)
j =

(
(X̃(N)

j )′
(
Σ∗j

)−1

X̃
(N)
j

)−1

(X̃(N)
j )′

(
Σ∗j

)−1

M̂
(N)
j =

(
(X̃(N)

j )′
(
Σ̂(N)

j

)−1

X̃
(N)
j

)−1

(X̃(N)
j )′

(
Σ̂(N)

j

)−1 .

The 2-by-m matrix M̃
(N)
j verifies :

λ̃
(N)
j = M̃

(N)
j Ỹ

(N)
j = λ∗j +

1√
N∆N

M̃
(N)
j Z̃

(N)
j

with Z̃
(N)
j =

(
Z(N)(1/fi)

)
i∈{Ũ(N)

j ,··· ,Ṽ (N)
j }

and Z̃
(N)
j

D−→
N→∞

Z̃j =
(
Z(1/g∗j (k))

)
1≤k≤m

from the central

limit theorem (17). In the same way,

λ
(N)
j = M̂

(N)
j Ỹ

(N)
j = λ∗j +

1√
N∆N

M̂
(N)
j Z̃

(N)
j .

From (49), we obtain M̂
(N)
j − M̃

(N)
j

P−→
N→∞

0, and thus,

√
N∆N

(
λ

(N)
j − λ∗j

)
− M̃

(N)
j Z̃

(N)
j

P−→
N→∞

0,

with M̃
(N)
j Z̃

(N)
j

D−→
N→∞

N2(0,Γ
λ∗j
2 ) (the same covariance matrix as that obtained with a generalized least

squares estimation), and this implies Proposition 4.3.

Proof. [Proposition 4.4] For each j = 0, · · · ,K, one first show that

N∆N · ‖ Ỹ
(N)
j − X̃

(N)
j λ

(N)
j ‖2bΣ(N)

j

D−→
N→∞

χ2(m− 2). (50)

Indeed, ‖ Ỹ
(N)
j − X̃

(N)
j λ

(N)
j ‖2bΣ(N)

j

=‖ P̂
(N)
j⊥ Ỹ

(N)
j ‖2bΣ(N)

j

=
1

N∆N
‖ P̂

(N)
j⊥ Z̃

(N)
j ‖2bΣ(N)

j

where P̂
(N)
j⊥ = Im−X̃

(N)
j M̂

(N)
j

is the matrix of the orthogonal projector in IRm on the orthogonal of Vj , where Vj = {X̃(N)
j λ, λ ∈ IR2}

is the 2-dimensional subspace of IRm generated by X̃
(N)
j (here the notion of orthogonality is based on the

inner product < u, v >bΣ(N)
j

= u′ ·
(
Σ̂(N)

j

)−1

· v for u, v ∈ IRm). From the previous proofs, we know :

• Σ̂(N)
j

P−→
N→∞

Σ∗j , X̃
(N)
j

P−→
N→∞

X∗
j and therefore P̂

(N)
j⊥

P−→
N→∞

P ∗j⊥ where

P ∗j⊥ =
(

Im −X∗
j

(
X∗′

j (Σ∗j )
−1X∗

j

)−1

X∗′
j (Σ∗j )

−1

)
is the matrix of an orthogonal projector on a (m−

2)-dimensional subspace of IRm;
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• < u, v >bΣ(N)
j

P−→
N→∞

< u, v >Σ∗j for u, v ∈ IRm;

• Z̃
(N)
j

P−→
N→∞

Z̃j with Z̃j
D∼ Nm(0, Σ∗j ).

Consequently, ‖ P̂
(N)
j⊥ Z̃

(N)
j ‖2bΣ(N)

j

D−→
N→∞

‖ P ∗j⊥Z̃j ‖2Σ∗j . From Cochran’s Theorem, we know ‖ P ∗j⊥Z̃j ‖2Σ∗j
D∼ χ2(m− 2) and therefore (50) is proved.

Moreover, with the notations of Proposition 3.2, if log f ≥ log f ′+log β/α then cov(Z(1/f), Z(1/f ′)) = 0.
But for all (i, j) ∈ {0, · · · ,K}2, i 6= j, ∀k ∈ {Ũ (N)

i , · · · , Ṽ
(N)
i } and ∀k′ ∈ {Ũ (N)

j , · · · , Ṽ
(N)
j }, | log fk −

log fk′ | ≥ log β/α. Thus, we deduce that the different λ
(N)
j are asymptotically Gaussian and independent.

It provides Proposition 4.4.
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