
A central limit theorem for conditionally
centred functional of a Markov random field

Carlo Gaetan
Dipartimento di Statistica, Università Ca’ Foscari - Venezia, Italy
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Abstract

We prove a central limit theorem for empirical sums of a condition-
ally centred functional of a Markov random field on a non necessarily
regular set of sites S. A studentized version of this theorem is also
given with a random normalisation. Since positive definiteness of the
variance of the sums is crucial for these results, we introduce the notion
of conditionally separating partition and we give tools to verify such a
positive definiteness. Examples of Ising an Gaussian Markov random
field are studied and central limit theorems are shown regardless of
phase transition.

Keyword: Central limit theorem, Markov random fields, Ising model, Ran-
dom environment, Gaussian model, Conditionally centred functional, Condi-
tionally separating partition, Irregular set.

1



1 Introduction

In recent years there has been interest in establishing central limit theorems
(CLTs) for random fields. Bolthausen [2] obtained a CLT for a stationary
field on the regular lattice S = Zd under weak dependency mixing condi-
tions (see also Dedecker, [8]); a non stationary version of this result is given
in Guyon [11]. Guyon and Künsch [13] have shown that a CLT for a sta-
tionary and ergodic field on Zd can be obtained without mixing conditions
exploiting a conditional centring property that reminds one of martingale
difference sequences on Z1. This idea has been applied to stationary and
ergodic point random fields on Rd by Jensen and Künsch [15]. More recently
Comets and Janzura [6] have proved a CLT for a sum of conditionally cen-
tred random fields under a moment condition and the assumption that the
empirical variance does not vanish in the order of the volume. The authors
applied the result to Markov random fields (MRF) on Zd with shift invariant
potentials. A nice consequence is the asymptotic normality of the maximum
pseudo-likelihood estimator (MPLE, Besag, [1]) for MRF on Zd, whether
phase transition occurs or not.

In this work, we establish a CLT for sums of a conditionally centred func-
tional of a MRF defined on S, despite the regularity of S. This is motivated
by many applications where S is not a regular lattice (see for example Cliff
and Ord [4], Cressie [7], Haining [14] and Tiefelsdorf [17]) and shift invari-
ance for the potentials is no longer valid. Moreover we obtain a studentized
form of CLT as in Comets and Janzura [6]. A basic ingredient is the positive
definiteness of the variance of the empirical means. We give tools that allows
us to verify such property. These tools, based on the notion of conditionally
separating partition of S, are free of regularity assumption for the lattice S,
and/or shift invariance for the potentials of the MRF.

The paper is organised as follows. Section 2 gives some definitions and
background materials. Section 3 contains our main results and Section 4
presents the tools to verify positive definiteness of the variance of the sum.
Finally, in Section 5, we give some examples of applications.

2 Preliminaries

Let X = (Xi, i ∈ S) be a random field on an infinite countable set S, with
states in a measurable space (E, E). For Λ ⊂ S, we denote XΛ = (Xi, i ∈ Λ)
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and XΛ = (Xi, i ∈ S \ Λ). By F , FΛ and F i we also denote the σ-field
generated by X, XΛ and X{i}, respectively. A configuration of XΛ is noted
by xΛ. Let G be a symmetric graph on S without loops: i and j are said
neighbours if {i, j} ∈ G. The boundary (respectively the neighbourhood) of
Λ is

∂Λ = {i ∈ S \ Λ : ∃j ∈ S with {i, j} ∈ G} (respectively Λ∗ = Λ ∪ ∂Λ).

For simplicity, we write ∂i = ∂{i}. The first and the second order neigh-
bourhoods of i are Vi = {i} ∪ ∂Vi and (Vi)

∗ =
⋃

k∈Vi
Vk = {j ∈ S : ∃k ∈

S such that i and j ∈ Vk}.
We suppose that X is a G-MRF, i.e. the law of XΛ given xΛ depends

only on x∂Λ, and we focus our attention on a derived field Y = (Yi), which
is a local and multidimensional functional of X defined by

Yi = fi(XVi
), for all i ∈ S (1)

where fi : EVi −→ Rd is a family of measurable and integrable functions.
The Yi are also assumed conditionally centred, namely

E(Yi/F i) = 0. (2)

The Markov property of X entails that if i 6= j are not neighbourhoods, then
Yi and Yj are conditionally independent with respect to F{i,j}.

Let (Λn) be an increasing sequence of finite subset of S such that card(Λn)=
|Λn| −→ ∞ if n → ∞. In the next section we prove a CLT for the sums
Sn =

∑
i∈Λn

Yi.

3 Main results

We consider first the univariate case Yi ∈ R. We denote

An =
∑
i∈Λn

∑
j∈Λn∩Vi

YiYj =
∑
i∈Λn

YiSi,n

where Si,n =
∑

j∈Λn∩Vi
Yj, and µq(Y ) = supi∈S E(|Yi|q). An is integrable pro-

vided µ2(Y ) < ∞. In this case, due to (2) and the conditional independence,
we have

E(An) =
∑

i,j∈Λn

E(YiYj) = Var(Sn) = σ2
n. (3)
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Proposition 1 Let X be a Markov random field on S, Y the local functional
of X defined by (1). Assume that Y is conditionally centred (2) and

(N1) : µ4(Y ) < ∞;
(N2) : M = sup{|Vi| , i ∈ S} < ∞;
(N3) : lim infn |Λn|−1σ2

n > 0 where σ2
n = Var(Sn).

Then
σ−1

n Sn
D−→ N (0, 1).

Proof. We adapt the proof of Theorem 3.3.1 in Guyon [11] (see also
Guyon and Künsch [13]). According to Stein [16], we prove that for every
λ ∈ R

lim
n→∞

E((iλ− Sn)eiλSn) = 0. (4)

where Sn = σ−1
n Sn. Following Bolthausen [2] we have

(iλ− λSn)eiλSn = An,1 − An,2 − An,3

where

An,1 = iλeiλSn

(
1− σ−2

n

∑
j∈Λn

YjSj,n

)
,

An,2 = σ−1
n eiλSn

∑
j∈Λn

Yj

(
1− iλSj,n − e−iλSj,n

)
,

An,3 = σ−1
n

∑
j∈Λn

Yje
iλ(Sn−Sj,n)

and Sj,n = σ−1
n Sj,n.

From (N1) we get that E|An,1|2 < ∞ and

E |An,1|2 = λ2E

(
1− σ−2

n

∑
i∈Λn

YiSi,n

)2

= λ2σ−2
n Var(

∑
i∈Λn

Ri,n) (5)

= λ2σ−4
n

∑
i∈Λn

Var(Ri,n) +
∑
i∈Λn

∑

j∈Λn:V ∗i ∩V ∗j 6=∅
cov(Ri,n, Rj,n)

≤ λ2σ−4
n |Λn| × (1 + M4)× µ4,

with Rj,n = YjSj,n. The inequality follows since if V ∗
i ∩ V ∗

j = ∅, then Ri,n

and Rj,n are conditionally uncorrelated with respect to to FV ∗i ∪V ∗j . On the
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other hand we have ((Vi)
∗)∗ = {j ∈ |Λn| : V ∗

i ∩ V ∗
j 6= ∅}. His cardinality is

bounded by |Vi|4 and consequently by M4 according to (N2).
Since |eiy − iy − 1| ≤ y2/2 for every y ∈ R, we have

E|An,2| ≤ λ2

2
σ−3

n

∑
j∈Λn

E
{|Yj|S2

j,n

} ≤ λ2

2
σ−3

n µ3

∑
j∈Λn

|Vj|2

≤ λ2

2
× σ−3

n × µ3 ×M2 × |Λn| .

Denote S∗j,n = Sn − Sj,n = σ−1
n

∑
i∈(Λn∩V c

j ) Yi. Since S∗j,n ∈ FVj and Y is

conditionally centred, we have

E(An,3) = σ−1
n

∑
j∈Λn

E[Yje
iλS∗j,n ] = 0.

The result follows since the expectation of each An,k, k = 1, 2, 3 goes to
zero by (N3).

Since σ2
n = Var(Sn) is usually unknown, a studentized version of Propo-

sition 1 can be useful (Comets and Janzura, [6]). According to (3) a natural
estimator for σ2

n is An.
The next result requires the following definition: C ⊂ S is a strong coding

subset of S if for any i, j ∈ C, i 6= j, i and j are not second order neighbour
sites, namely V ∗

i ∩ V ∗
j = ∅. Now we set two additional assumptions for G :

(M1) S is the union of K disjoint strong coding subsets Ck, k = 1, . . . , K.
(M2) for every k = 1, . . . , K, limn |Ck ∩ Λn| = +∞.

Proposition 2 Let ξn = A
−1/2
n Sn if An > 0, ξn = 0 otherwise. Then, under

conditions (N1-N2-N3) and (M1-M2):

ξn
D−→ N (0, 1).

Proof. Denote Ri,n = YiSi,n, R̃i,n = Ri,n−E(Ri,n) and Dk,n =
∑

i∈Λn∩Ck
R̃i,n.

For large n we have

An

σ2
n

− 1 =

∑
i∈Λn

R̃i,n

σ2
n

=

∑K
k=1

Dk,n

|Ck∩Λn|
|Ck∩Λn|
|Λn|

σ2
n

|Λn|
.

R̃i,n, i ∈ Ck, have zero means and variances bounded by µ4(Y )(1 + M2).
Moreover, they are conditionally independent with respect to FCk . By
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the strong law of large numbers for L2 centred and independent variables
(Breiman, [3, Theorem 3.27]), we have for any configuration xS\Ck

lim
n

Dk,n

|Ck ∩ Λn| = 0, PxS\Ck
− a.s. .

Since this limit does not depend on xS\Ck
, the limit still holds almost surely

for every x and we have

lim
n

An

σ2
n

= 1, a.s. .

On the other hand, (N3) entails that limn P (An ≤ 0) = 0 and we obtain the
required result.

Now we consider briefly the the multivariate case, i.e. Yi ∈ Rd. Let
‖ · ‖ be the euclidean norm of Rd and, for a symmetric definite positive
matrix A, denote Ar/s = ΓΛr/sΓT , for r and s > 0 integer numbers. Here
Λr/s = diag(λ

r/s
i ), where (λi) are the eigenvalues of A and Γ is the matrix of

columns eigenvectors with unit norm. We have An =
∑

i∈Λn

∑
j∈Λn∩Vi

YiY
T
j ,

Σn = Var(Sn) = E(An), and we replace conditions (N1-N3) by :
(N1’) : µ4(Y ) = supj∈S E(‖Yj‖4) < ∞;
(N3’) : lim infn |Λn|−1Σn ≥ ∆, where ∆ is a positive definite matrix.

Proposition 3 Under the conditions (N1’-N2-N3’) we have

Σ−1/2
n Sn

D−→ N (0, I).

Moreover, let ξn = A
−1/2
n Sn if An is a positive definite matrix, ξn = 0 other-

wise. Under the additional conditions (M1-M2),

ξn
D−→ N (0, I).

Proof. The proof follows easily if we consider two linear combination
aT Σ−1/2Sn and aT A

−1/2
n Sn for a 6= 0 and we apply Propositions 1 and 2,

respectively.
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4 Minorization of the variance of the empir-

ical mean

We provide some tools to verify that Var(Sn) is positive definite. We use the
following conditional independence minorization as suggested by J.L. Jensen
(see Guyon and Künsch [13] and Jensen and Künsch [15])

Var(T ) = EH(Var(T/H)) + V arH(E(T/H)) ≥ EH(Var(T/H)). (6)

Here, H is a sub σ-field of F , and T is a F -measurable variable with finite
variance. Such as argument has been applied to ergodic Ising model on Zd

(Guyon and Künsch, [13]), pairwise interaction point processes (Jensen and
Künsch, [15]) and Markov field dynamics (Guyon and Hardouin, [12]). Here
we take T = Sn and H will be specify below.

4.1 Conditionally separating partition

We define a specific partition of S, called conditionally separating partition
(CSP), in the following way: we plunge S into S+, a over-set of S; then we
consider a subset C ⊂ S+, and for each i ∈ C, we set Wi ⊂ S such that
P = {Wi, i ∈ C} is a partition of S. Note that P is indexed by C.

Definition 1 A partition P = {Wi, i ∈ C} of S is a CSP if for every i ∈ C
we have W ∗

i \{i} ⊂ S\C
To clarify this definition, we give three examples.

S = Z2 and 4-nearest neighbours graph

Take S+ ≡ S = Z2, G the 4-nearest neighbours graph, C = {3i, i ∈ Z2}, Vi =
{j ∈ Z2 : ‖i− j‖1 ≤ 1}. In this case P = {Wi, i ∈ C} where Wi = {j ∈ Z2 :
‖i− j‖∞ ≤ 1} is a CSP and W ∗

i = {j ∈ Z2 : ‖i− j‖1 ≤ 3 and ‖i− j‖∞ ≤ 2}
(see Figure 1). For Λn = [−n, +n]2 and Cn = C ∩ Λn, the asymptotic rate,

lim infn→∞
|Cn|
|Λn| , is positive and equal to 1

9
.

Regular lattice Z2 with holes and nearest neighbours
graph

Let T = (1, 1) + 2 × Z2 the holes set, S = Z2\T, S+ = Z2, C = 6 × Z2 (see
Figure 2). S+ is an overset of S and C is not contained in S. G is still the
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(a) (b)

(c) (d)

Figure 1: (a) Neighbourhood Vi of site i (×) for the 4-nearest neighbours, (b)
second order neighbourhood (Moore neighbourhood) Wi, (c) neighbourhood
W ∗

i and (d) neighbourhood Ui.

nearest neighbours graph: two thirds of the sites have 2-nearest neighbours
whereas one third have 4-nearest neighbours. P = {Wi, i ∈ C} is a CSP if
we take Wi = {j ∈ S : ‖i− j‖∞ ≤ 1}. For Ui = W ∗

i \{i}, there are three
types of (Wi,W

∗
i , Ui), namely

1. If i ∈ (0, 0)+6×Z2, Wi, W ∗
i and Ui contain 5, 9 and 8 sites respectively

(see Figure 3);

2. for i ∈ (3, 0) + 6× Z2, or i ∈ (0, 3) + 6× Z2, Wi, W ∗
i and Ui contain 7,

13 and 12 sites (see Figure 4);

3. for i ∈ (3, 3) + 6× Z2, Wi, W ∗
i ≡ Ui contain 8 and 16 sites (see Figure

5).

If Λn = [−n, +n]2, the asymptotic rate of C is positive and equal to 4
27

.
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Figure 2: Regular lattice with holes (◦).

(a) (b) (c)

Figure 3: (a) Neighbourhood Wi, (b) neighbourhood W ∗
i , (c) neighbourhood

Ui for i ∈ (0, 0) + 6× Z2.

A finite and irregular lattice S

This example deals with a finite and irregular lattice S with 41 sites (◦ and
•) and a graph defined as in Figure 6. We take S+ = S∪{×} and we consider
C with 10 points (•) and the point ×. Note that C * S. Then the partition
P = {Wi, i ∈ C}, where Wi is delimited by the dotted lines, is a CSP. The
partition rate is equal to 9

42
.

Given a CSP P we can rearrange the terms of Sn as

Sn =
∑
i∈Λn

Yi =
∑
i∈Cn

∑
j∈Wi,n

Yj =
∑
i∈Cn

Gi,n

where Cn = {i ∈ C : Wi,n 6= ∅}, Wi,n = Wi ∩ Λn and Gi,n =
∑

j∈Wi,n
Yj.

Moving from this remark, Lemma 1 gives a simple and useful property for
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(a) (b) (c)

Figure 4: (a) Neighbourhood Wi, (b) neighbourhood W ∗
i , (c) neighbourhood

Ui for i ∈ (3, 0) + 6× Z2.

(a) (b)

Figure 5: (a) Neighbourhood Wi, (b) neighbourhood W ∗
i ≡ Ui for i ∈ (3, 3)+

6× Z2.

the partial sums Gi,n.

Lemma 1 For two different sites of C , l and k, Gl,n and Gk,n are condi-
tionally independent with respect to FC.

Thus we have
Var(Sn/FC) =

∑
i∈Cn

Var(Gi,n/FC). (7)

According to (6), a strategy for verifying (N3) consists in three steps :

1. bounding from below Var(Gi,n/FC), i ∈ C;

2. bounding from below EFC (Var(Gi,n/FC));

3. controlling the asymptotic rate of C, i.e. lim infn→∞
|Cn|
|Λn| .
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Figure 6: An example of irregular finite lattice.

Step 3 is purely combinatorial and requires a direct examination of G and
S+. For the other steps, it is sufficient to look at points i ∈ C provided that
|∂Λn|/|Λn| −→ 0. We can also restrict our investigation to points i ∈ C ∩ S
since, if i /∈ S, then Gi,n is FC-constant.

Thus we focus on i ∈ C ∩ S such that i /∈ ∂Λn. In this case, we have
(Gi,n/FC) = gi(Xi, xUi

). No universal tools are available for bounding gen-
eral expressions of Var(Gi,n/FC) from below. This variance is positive pro-
vided that (Gi,n/FC) is not constant; therefore we have to find xUi

such
that (Gi,n/FC) is not constant. We need only study minorizations for sites
i ∈ C1 ⊂ C∩S provided lim infn→∞ |C1,n| / |Cn| = κ > 0, with C1,n = C1∩Λn.
In some cases, we can choose C1 such that the geometry of Ui does not de-
pend on i ∈ C1 and πUi

(·/xUi
) is bounded from below by c× π(·/xUi

), where
c is a strictly positive constant and π(·/xUi

) only depends on xUi
.

For the second step, note that

EFC (Var(Gi,n/FC)) =

∫
Var(Gi,n/xU)πU(xU)λ(dxU).

A bound for this expression is obtained when πU is bounded from zero and
Var(Gi,n/xU) is positive over a set of xU with positive measure. If the
state space is compact and πU(xU/x∂U) is strictly positive and continuous in
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(xU , x∂U), we have

πU(xU) =

∫
πU(xU/x∂U)π∂U(x∂U)λ(x∂U) ≥ ρ

∫
π∂U(x∂U)λ(x∂U) = ρ

with ρ = infxU ,x∂U
πU(xU/x∂U) > 0.

5 Examples

5.1 Isotropic Ising model in a random environment on
Z2

Let S = Z2, p > 0 a positive probability and G(p) the percolation graph on S
defined as follow : let L = {Li,j, i, j ∈ S, ‖i− j‖1 = 1} be a collection of in-
dependent identically distributed Bernoulli random variables with parameter
p; then, for each i ∈ S, the neighbourhood of i is

∂i = {j ∈ S s.t. ‖i− j‖1 = 1 and Li,j = 1}

An nearest neighbourhood Ising model for this graph is a probability π on
{−1, +1}Z2

such that

πi(xi | xi) = πi(xi | x∂i) =
exp{xi(α + βvi)}
2 cosh(α + βvi)

(8)

where vi =
∑

j∈∂i xj.
For p = 1, this is the 4-nearest neighbour Ising model and for some val-

ues of θ = (α, β), there are more than one probability satisfying (8) (Georgii,
[10]). This causes difficulties in studying asymptotic properties of local esti-
mators like maximum pseudo-likelihood estimator (MPLE), coding estimator
(see Comets [5] and Guyon [11]). For 0 < p < 1, the graph is not regular
and potentials are not shift invariant.

Assume that X is observed on the neighbourhood Λ∗n of Λn = [−n, +n]2

and we concentrate on MPLE θ̂, a maximiser of the logarithm of the pseudo-
likelihood

Un(θ) =
∑
i∈Λn

log πi(xi | xi; θ).
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Derivation of asymptotic normality for θ̂ involves examination of asymptotic
properties of the derivative of Un

U (1)
n (θ) =

∑
i∈Λn

(log πi)
(1)(xi | xi; θ) =

∑
i∈Λn

(
1
vi

)
(Xi − tanh(α + βvi)).

If we consider Yi = (a + bvi)(Xi− tanh(α + βvi)), (a, b) 6= 0, then Yi satisfies
(2). More generally, for some non zero function b, we prove the CLT for the
sum of conditionally centred functional

Yi = b(vi)(Xi − tanh(α + βvi))

To verify (N3), choose C = 3 × Z2, Wi = {j : ‖j − i‖∞ ≤ 1} : P =
{Wi, i ∈ C} is a CSP of S. Define, for (Vi)

∗ the second order neighbour of i,

C1 = {i ∈ C s.t. Lk,l = 1 if k, l ∈ (Vi)
∗ and ‖k − l‖1 = 1}

C1 is the subset of C of site i such the 16 pairs of nearest neighbour sites of
(Vi)

∗ are all connected. It is easy to see that

lim
n

|C1,n|
|Λn| =

p16

9
> 0

We have

Var(
∑
i∈Λn

Yi) ≥
∑
i∈Cn

E{Var(Yi +
∑

j∈Wi,n\{i}
Yj | FC)}.

Look at sites i ∈ C1 ∩ [−(n− 2), (n− 2)]2. As (Vi)
∗ ⊆ Λn, we have

Yi +
∑

j∈Wi\{i}
Yj = Gi(Xi, xAi

) + gi,

where gi is FC-constant and Ai = i + A0 where A0 = {j ∈ S : ‖j‖1 = 1 or
2}.

For i ∈ C1, b : V → R with V = {−4,−2, 0, 2, 4}. Suppose that b is
not zero. The crucial functional step in Guyon and Künsch [13] (see Proof
of Theorem 3, page 190-193) is still valid here, without any hypothesis of
shift invariance, stationarity or ergodicity for the Ising model. This result is
the following there exists a configuration x0

A0
on A0 such that, uniformly in

i ∈ C1,n, Xi 7→ Gi(Xi, x
0
Ai

) is not constant, x0
Ai

being the configuration x0
A0
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shifted from i. Then, according to (8), (Xi | x0
Ai

) is not constant and there
exists δ > 0 such that, for every i ∈ C1,n, Var(Yi +

∑
Wi\{i} Yj | FC) ≥ δ > 0.

Therefore, E(Var(Yi +
∑

Wi\{i} Yj | FC)) ≥ δ× π(x0
Ai

). On the other hand, a

bound from below for π(x0
Ai

) is a consequence of Bayes formula:

π(xAi
) =

∑
x∂Ai

π(xAi
| x∂Ai

)π(x∂Ai
) ≥ ε

where ε = infyAi
,y∂Ai

π(yAi
| y∂Ai

) > 0. Thus we have, for large n,

Var(Sn) ≥ p16 × δ × ε

10
× |Λn| .

For p = 0, CLT is trivial because the random variables Yi are independent
and identically distributed. For p = 1, we are in presence of the 4-nearest
neighbour. Ising model (Guyon and Künsch, [13]): CLT for Y is valid re-
gardless of phase transition, or non stationarity, or non ergodicity of the
model.

The result obtain here for the percolation graph can be generalized to
more general random environment : the main property of the random graph
that is need is the sub-ergodicity of the subset C1 : lim infn

|C1n|
|Cn| > 0.

5.2 Isotropic Ising model on S = Z2\T
Consider the non-stationary nearest neighbours isotropic Ising model on S =
Z2\T, T = (1, 1) + 2× Z2, Λn = [−n, +n]2 ∩ S, and the centred functional

Yi = b(vi)(Xi − tanh(α + βvi))

with vi =
∑

j∈∂i xj. Take the CPS as defined in example 2. If we focus on

C1 = (3, 0) + 6 × Z2, (N3) is fulfilled and limn→∞
|C1,n|
|Λn| = 1

27
. For i = (3, 0),

Yi +
∑

Wi\{i} Yj = Gi(Xi, xAi
) + gi, where gi is FC-constant, and Ai = {j ∈

S : ‖j − i‖1 = 1 or 2, j 6= (3,±1) and j 6= (3,±2)}. We can show that there
exists xAi

such that x 7→ Gi(x, xAi
) is not constant and we can apply same

argument as before to prove CLT for Y .

5.3 Ising model on an irregular lattice

Consider S is an infinite countable set equipped with a graph G satisfying
(N2). Suppose also that there exists a CPS, P = {Wi, i ∈ C}, with basis
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(S,C) such that for every i, Vi = {i} ∪ ∂i ⊂ Wi. Suppose that (Λn) is a

strictly increasing sequence such that lim infn
|Cn|
|Λn| > 0.

Let X be an Ising model on (S,G) with conditional laws

for i ∈ S : πi(xi | x∂i) =
exp{xi(αai + βvi)}
2 cosh(αai + βvi)

, (9)

where vi =
∑

j∈∂i bijxj, θ = (α, β) is a parameter and (ai), (bij = bji) are
known weights. The conditionally centred functional Y is

Yi = bi(x∂i)(Xi − tanh(αai + βvi)

and Sn =
∑

i∈Λn
Yi =

∑
i∈Cn

Gi,n.
If i ∈ C and (Vi)

∗ ⊂ Λn, Gi,n = Gi = Gi(Xi, x∂i∪∂2i) + gi where gi is
FC-constant, ∂2i = {k, k 6= i : ∃j ∈ ∂i s.t. k ∈ ∂j}, and

Gi(Xi, xAi
) = bi(x∂i)Xi +

∑

j∈∂i

bj(Xi, wj,i){xj −mj(Xi, wj,i)}

where, for j ∈ ∂i, wj,i = (xk, k ∈ ∂j\{i}). We can verify (N3) by the
following steps:

1. find C1 ⊂ C such that:

(a) lim infn
|C1,n|
|Cn| > 0;

(b) for each i ∈ C1, ∃x∂i∪∂2i s.t. ∆i = Gi(+1, x∂i∪∂2i)−Gi(−1, x∂i∪∂2i) 6=
0;

(c) get a uniform lower bound for |∆i| over C1;

2. get a uniform lower bound for πi(xi | x∂i) and π∂i∪∂2i(x∂i∪∂2i) in i ∈ C1,
xi, x∂i, x∂i∪∂2i.

Step 1 requires ad hoc strategies. Step 2 follows easily provided (ai) and
(bij) are bounded since conditional probabilities are positive and continuous
in (ai, bij), xi, x∂i and x∂i∪∂2i.

Now we consider Yi = (ai
vi

)(Xi− tanh(αai + βvi)). To prove CLT for (Yi),
we need only to consider linear real functions bi(vi) = aai + bvi, (a, b) 6= 0.
Setting, for j ∈ ∂i, vj,i = vj − bi,jxi =

∑
k∈∂j\{i} bk,jxk, we can write

∆i = gi(x∂i; a, b) + hi(x∂2i, a, b; θ), with gi(x∂i) = 2bi(vi) and

hi(x∂2i) = −
∑

ξ∈{−1,+1}

∑

j∈∂i

ξ{tanh(αaj + ξβbi,j + βvj,i)}{aai + b(ξbi,j + vj,i)}
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To simplify, look at the particular case where ∂i∩ ∂2i = ∅ for any i ∈ C1.

1. If b 6= 0, for any x∂2i , ∆i takes two values ∆′
i 6= ∆′′

i provided there exists
two configurations x′∂i and x′′∂i such that v′i 6= v′′i . As max{|∆′

i| , |∆′′
i |} ≥

1
2
|b| |v′i − v′′i |, we have a lower bound for |∆i| if we can obtain a lower

bound for |v′i − v′′i |.
2. If b = 0, then ∆i = aaiDi(x∂2i) where Di(x∂2i) = (2−∑

j∈∂i tanh(αaj−
βbi,j + βvj,i) − tanh(αaj + βbi,j + βvj,i). Then (N3) holds under the
conditions :

inf
i∈C∗1

|ai| > 0 and inf
i∈C∗1

sup
x∂2i

|Di(x∂2i)| > 0.

An irregular lattice which comes from a Poisson process on R
Now we shall consider a particular example of irregular lattice. Suppose

that S is a realisation of an homogeneous Poisson process on R, and write
S = {ik, k ∈ Z} with ik < il if k < l. Consider the 2-nearest neighbour Ising
model on S, with weight ai ≡ 0 and bi,j = f(|i− j|) for f : (R+)∗ −→ (R+)∗

decreasing.
For C = {i3k, k ∈ Z} and Wik = {ik−1, ik, ik+1}, the partition P =

{Wi, i ∈ C} is a CSP. Define

C1 = {il ∈ C : inf{|il − il−1| , |il − il+1|} ≤ 1}

and Λn = [−n, +n] ∩ S. It is easy to verify that limn
|C1,n|
|Λn| > 0.

On the other hand, because vil = bil,il−1
xil−1

+ bil,il+1
xil+1

, the range of
variation of vil is eil = 2(bil,il−1

+ bil,il+1
) and infi∈C1 ei > 0. Thus (N3) is

satisfied.
Note that we can weaken the hypothesis about the Poisson process, in-

cluding dependence and/or inhomogeneity for other point processes.

5.4 Gaussian MRF on a irregular lattice

Let X be a Gaussian MRF on (S,G). The conditional law in each site is

Xi|x∂i ∼ N (αvi, wi) (10)

where wi > 0, vi =
∑

j∈∂i bijxj (ai, bij) are known weights, α is an unknown
parameter.
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We set ai = w−1
i . The conditional specification (10) is coherent if for any

i, j ∈ S, i 6= j, aibij = ajbji and for any finite subset Λ ⊂ S, the symmetric
matrix JΛ = (JΛ(i, j))i,j∈Λ, where JΛ(i, i) = ai, JΛ(i, j) = −αaibij, i, j ∈ Λ,
i 6= j, is positive definite.

If X is observed on a increasing sequence (Λn) of S, asymptotic normality
of MPLE α̂n can be proved under the contraction condition (Guyon, [11,
Section 4.3]) :

|α| {sup
i

∑

j∈∂i

|bij|} < 1 (11)

This condition entails that there is not phase transition and X is α-mixing
(Doukhan, [9]). The last property allow us to establish the asymptotic nor-
mality.

We prove asymptotic normality of MPLE α̂n by means of proposition
1 without condition (11). The verification of condition (N3) still requires
careful examination. The conditionally centred functional Y is

Yi = (log π(xi | x∂i)
(1)
α = aivi(Xi − αvi).

Let P = {Wi, i ∈ C} be a PCS with C ⊆ S such that for any i, Vi =
{i} ∪ ∂i ⊆ Wi. For all (Vi)

∗ ⊆ Λn we have

Gi,n = Gi = aivi(Xi − αvi) +
∑

j∈∂i

ajvj(xj − αvj) + gi

where gi is FC(X)-constant. For j ∈ ∂i, we denote vj = bjiXi + vji with
vji =

∑
k∈∂j,k 6=i bjkxk. We can also write Gi as:

Gi = ciXi + dijX
2
i + eij

where ci =
∑

j∈∂i ajbij(xj − 2αvji) and dij = −α{∑j∈∂i ajb
2
ij}. Note that ci,

dij and eij are FC(X)-constant.
A lower bound for V ar(Gi | FC(X)) is determined by noting that if

Z ∼ N (µ, σ2), and G = cZ + dZ2 then

V ar(G) = (c + 2dµ)2σ2 + 2d2σ4 ≥ 2d2σ4.

We obtain

V ar(Gi | FC(X)) ≥ 2α2{
∑

j∈∂i

ajb
2
ij}2 × a−2

i = 2α2{
∑

j∈∂i

bij × bji}2.
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The lower bound does not depend on x∂i, thus a sufficient condition for (N3)
is

α 6= 0 and lim inf
n

∑
i∈Cn

{∑j∈∂i bij × bji}2

|Λn| > 0.
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