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Abstract --- Many time series forecasting problems 
require the estimation of possibly inaccurate, but long-
term, trends, rather than accurate short-term prediction. In 
this paper, a double use of the Self-Organizing Map 
algorithm makes it possible to build a model for long-
term prediction, which is proven to be stable. The method 
uses the information on the structure of the series when 
available, by predicting blocs instead of scalar values. It is 
illustrated on real time series for both scalar and bloc 
predictions. 

1 Introduction 
Time series forecasting is a problem encountered in many 
fields of applications, as finance (returns, stock markets), 
hydrology (river floods), engineering (electrical 
consumption), etc. Many methods used traditionally for 
time series forecasting perform well (depending on the 
complexity of the problem) on a rather short-term horizon 
(a few steps of prediction), but are rather poor for longer-
term prediction. This is due to the fact that they are 
usually designed to optimize the performance at short 
term, their use at longer term being not optimized. 
However, and despite the fact that long-term predictions 
in real cases will probably never be very accurate, there is 
a need in many applications to have insights about the 
possible structure of the series in the future: are there 
bounds on the future values, what can we expect in 
average, are confidence intervals on future values large or 
narrow, etc.? 
Obtaining trends on future values is the purpose of the 
method proposed in this paper. Simulations, i.e. 
predictions performed recursively to enlarge the 
prediction horizon, are the real goal. 
In this paper, we will limit the discussion to NARX-like 
models, i.e. non-linear auto-regressive prediction models, 
possibly with exogenous inputs, but without moving 

average terms. NARX is also the type of models for 
which SOM [1, 2] were used in the past in time series 
prediction context.  For example, [3, 4, 5] used Kohonen 
maps and some local models to achieve the prediction 
goal, while [6, 7, 8] used Kohonen maps as global 
predicting model.  
However, most of these methods and their variants are 1) 
discontinuous at the limits of validity of local models, and 
2) not designed specifically to perform long-term 
prediction. Note that discontinuities precisely prohibit 
efficient long-term predictions, as injecting predictions in 
the models will lead to instabilities. In this paper, we will 
present a global model designed to be used in long-term 
prediction context, in view of obtaining forecasting trends 
(means, confidence intervals, bounds, etc.). 
The following of this paper is organized as follows. 
Section 2 sets the basic concepts of time series prediction.  
Section 3 presents a method for long-term time series 
forecasting, based on a double use of the SOM algorithm. 
Structured series, for example hourly values with a daily 
quasi-periodicity, will be exploited by the method. 
Section 4 gives a sketch of the proof of the method 
stability, and section 5 presents experiments performed on 
two time series, the Santa Fe A series and a problem of 
electrical load forecasting.   

2 Time series prediction 
The classical problem of time series prediction is defined 
as follows: 
 ( )111 +−−+ = ptttt y,,y,yfŷ K . (1) 

In equation (1), series y is supposed to be known until 
time t, ŷt+1 is the estimation of the series at time t+1, 
vector 

 [ ]11 +−−= ptttt yyyY K  (2) 

is the regressor at time t, and f(.) is the model used for 



prediction. If f(.) is linear, model (1) is AR (Auto-
Regressive); if f(.) is non-linear, the model is NAR 
(Nonlinear AR). Note that exogenous variables may be 
added to the past values of the series in regressor (2); in 
this case, the models become respectively ARX and 
NARX. The methodology presented in this paper is non-
linear (NAR), and may be extended straightforward to 
NARX models. However in order to simplify the 
presentation, only NAR models will be considered here. 
In some forecasting problems, it is interesting to predict 
several values of the series in one bloc, rather than a 
single ŷt+1 scalar value. For example, in an electrical load 
forecasting problem, hourly values to predict have a 
structure that makes natural to predict 24 values (one day) 
in a single pass. In such case, problem (1) becomes 
   [ ] ( )1111 ,,,ˆˆˆ +−−+−++ = pttttktkt yyyfyyy KK .(3) 

Model f(.) has now a vector output. Size p of the regressor 
is not necessarily equal to the forecasting horizon k. 
Nevertheless, in many cases, p will be a multiple of k; this 
will be assumed in the following again for simplicity 
reasons, while this is absolutely not a necessary condition 
for the proposed method. In our electrical load forecasting 
example, k=24, while the regressor could for example 
include the last three days values (p=72). 
This paper will not address the problem of choosing 
optimal values for k and p; even for non-linear models 
f(.), there is a vast literature on the topic (see for example 
[9] and [10]). If the quality of forecasting is chosen as 
criterion, extensive cross-validation may for example be 
used to choose optimal values for k and p, even if this 
way of working is computationally very intensive. 

3 Double SOM for long-term 
prediction 

3.1 Definitions 
Based on time series yt, we define the series of 
deformations as 
 yktt yyd −= + . (4) 

In problems where k=1, dt is simply the difference 
between two successive values of the series. In our 
electrical load example where k=24, dt represents the 
difference between the consumptions taken at the same 
hour on two consecutive days. 
Similarly to (2), we also define a regressor in the 
deformation space as 

 [ ]11 +−−= ptttt dddD K  (5) 

3.2 SOM in the regressor space 
Each time we have a regressor Yt, the characterization of 
model f(.) begins by looking in the past how the series 
evolves right after such regressor.  In other words, we 

look in the past what are the deformations associated to 
regressors similar to Yt. Of course, there is no chance to 
find exactly the same regressor Yt in the past of the series: 
the past regressors will thus be arranged in classes (using 
a one-dimensional Kohonen string). Gathering regressors 
into classes also offers the advantage of performing local 
averages, which will reduce overfitting. 
A Kohonen string with nr centroids (or codevectors) Ai is 
thus organized in the space of regressors; each regressor 
Yt is associated to a centroid Ai(t) according to the nearest 
neighbor rule. In our electrical load example, assuming 
that the regressor includes the values of the last three days 
of the series, the dimension of centroids Ai is 72. 

3.3 SOM in the deformation space 
Once the Kohonen map in the regressor space has been 
formed, and a centroid Ai(t) related to each regressor Yt, we 
are looking for the way how, in the past, the series has 
evolved from any of the regressors associated to Ai(t). This 
evolution is characterized by the deformations Dt 
associated to these regressors. We are thus looking for the 
statistical law of deformations Dt conditional to class i. To 
estimate these laws, we will proceed in two steps. First, 
classes are created in the deformation space, similarly to 
the ones created in the regressor space. A Kohonen string 
with nd centroids Bj is thus organized in the space of 
deformations; each deformation Dt is associated to a 
centroid Bj(t) according to the nearest neighbor rule. In our 
electrical load example and in the same conditions as 
above, the dimension of centroids Bj is 72 too. Secondly, 
the empirical law of deformations conditional to each 
class i is computed, as detailed in the next subsection. 

3.4 Transition table 
A so-called transition table T of size nr × nd is defined by 
 [ ] ( )ij ABPj,iT = , (6) 

the empirical probability that deformation Dt is associated 
to centroid Bj when the corresponding regressor Yt is 
associated to centroid Ai. The sum of terms on each line i 
of the table is thus equal to 1, this line representing the 
empirical law µi of deformations conditional to class i. 
This transition table justifies the use of Kohonen one-
dimensional strings to create classes (in the regressor and 
deformation spaces), instead of simple vector quantization 
methods or Kohonen two-dimensional maps. The use of 
Kohonen maps is justified by the fact that the transition 
table will be organized: for example, as adjacent values 
on a specific row i will correspond to close centroids Bj in 
the deformation space, the corresponding probabilities 
given by (6) will be similar in most cases. A graph of the 
table values will also illustrate the behavior of the time 
series. As each entry (row or column) on the table 
corresponds to one of the regressor or deformation spaces, 
one-dimensional SOMs are preferred too (compared to 



two-dimensional maps). An example of such a table will 
be provided in section 5. The classes resulting of the 
SOM algorithm will also be shown both in the regressor 
and deformation spaces. It is then possible to observe the 
code vectors represented in their respective classes.  

3.5 Prediction 
The organization of the SOM strings in the regressor and 
deformation spaces, and the evaluation of the transition 
table, constitute the modeling of the past behavior of the 
series.  Next, a prediction may be performed as follows: 
• regressor Yt at time t is built; 
• centroid Ai(t) in the regressor space is identified; 
• a deformation Dj is drawn randomly, according to the 

empirical law µi of probabilities T[i, j]; 
• Yt and Dj are summed according to 

 [ ] ttpktktkt DYyyy +=+−+−++ 11K  (7) 

• the part [yt+k   yt+k-1   …   yt+1] extracted from vector 
(7) constitutes the prediction as defined by (3). 

In our electrical load example, again assuming a regressor 
with three-days values, the vector defined by (7) has a 
dimension of 72, while the extracted prediction has 
dimension 24. 

3.6 Long-term prediction and trends 
As with any other prediction model, it is possible, in order 
to perform long-term prediction, to inject recursively the 
prediction(s) (7) in models (1) or (3). Of course, injecting 
predictions in the right members of models (1) and (3) 
may lead to rapid divergence, if the predictions are not 
accurate enough. One advantage of the proposed method 
is that any prediction remains in a limited domain, as 
proven in section 4. Therefore it cannot diverge, unlike 
other prediction models used for long-term forecasting. 
As mentioned in the introduction, this is precisely the aim 
of the method proposed in this paper: there is no argument 
to claim that it will perform better than any other 
forecasting method at horizon 1 (yt+1) or even at horizon k 
(yt+k). However, when the whole procedure from sections 
3.2 to 3.5 is repeated by injecting predictions to obtain 
long-term forecasting, the structure itself of the method, 
together with its proof of stability, ensures a reasonable 
behavior of the long-term prediction. Note that when k>1, 
injecting predictions in (3) means to inject k predicted 
values, to obtain another set of k new predictions. 
Trends are the ultimate goal of the method. Indeed the 
whole procedure can be repeated several times (Monte-
Carlo procedure), leading to different forecasting curves, 
or simulations, due to the random choice in step 3.5. The 
different curves obtained may be seen as various instances 
of possible forecastings, and their trends, mean, standard 
deviations, etc. as global characteristics of the series in 
the future. This will be illustrated in section 5, where the 

method will be applied to two time series, respectively 
with k=1 and k>1. 

4 Method Stability: Sketch of  Proof 
The predictions obtained by the model described in 
Section 3 should ideally be confined in the initial space 
defined by the learning data set. In that case, the series of 
predicted values Yt is said to be stable. Otherwise, if the 
series tends to infinity or otherwise diverges, it is said to 
be unstable. Stability is naturally a necessary condition to 
obtain a valid long-term prediction.  
The following of this section summarizes the proof of the 
stability of the method. The proof consists in two steps: it 
is first shown that the series generated by the model is a 
Markov chain; secondly, it is demonstrated that this 
particular type of Markov chain is stable.  
To prove that the series is a Markov chain, we consider 
Y0=x, the initial regressor of the series Yt, and C0 the 
corresponding SOM class in the regressor space. The 
deformation that is applied to Y0 is D0. Then the next 
values of the series are given by Y1 = Y0 + D0, Y2 = Y0 + D0 

+ D1, …, with D0, D1, … drawn randomly from the 
transition table for classes C0, C1, … respectively. 
The series Yt is therefore a Markov chain, homogeneous 
in time (the transition laws are not time dependant), 
irreducible and defined over a numerable set (the initial Yt 
are in finite number, and so are the deformations).  
To show the stability of this Markov chain and thus the 
existence of a stationary law, Foster’s criterion [11] is 
applied. A necessary and sufficient condition for an 
irreducible chain to be ergodic is that there exists a 
positive function g(.), a positive ε and a finite set A such 
that:  

 
( )( ) ( )
( )( ) ∞<=∈∀

ε≤−=∉∀

+

+
xY|YgE:Ax

xgxY|YgE:Ax

tt

tt

1

1 . (8) 

We use g(.) = ||.||² in (8). Since the Markov chain is 
homogenous, it is sufficient to observe transition D0 from 
Y0 to Y1. The demonstration is done for a two-dimensional 
case but can be generalized easily to other dimensions.  
Before going in further details, let us remark that class C0 
covers less than a half plane. It is thus included in a cone 
with vertex A and delimited by the normalized vectors 
a1and a2 (see Fig. 1). There are two possibilities: either 
a1and a2 form an acute angle, either an obtuse one, as 
shown in Figs. 1a and 1b respectively.  
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Fig. 1  Notations and conventions for the proof of stability; see 
text for details. Left: Fig 1a the class is included into a zone with 
acute angle; right: Fig 1b the class is included into a zone with 
obtuse angle. 



Before applying Foster’s criterion, note that the three 
following geometrical properties can be proven:  
1. Denoting  

 iix a
x

x
lim δ=⋅∞→ , (9) 

we have δ1 and δ2 both positive in the acute angle case, 
while either δ1 or δ2 is positive for an obtuse angle.  
2. We define b1 such that the angle between a1 and b1 is 
π/2. Similarly b2 is defined such that its angle with a2 is 
also π/2. Then, for both the acute and obtuse angle cases, 
we have  

 0>⋅∈ iCx b
x

Ax
inf . (10) 

3. Assume that (which can easily be proved numerically): 
 ( ) ( ) 0  and  0 2010 00

<⋅<⋅ µµ aDEaDE , (11) 

where µ0 is the empirical low corresponding to class C0 in 
the transition table. Then as shown in Fig. 2, we have:  
 ( ) 000

<⋅µ ibDE  (12) 

for either i=1 or i=2 in case of an acute angle (Fig. 2a) or 
for both of i=1 and i=2 for the obtuse case (Fig. 2b).  
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Fig. 2  Third geometrical property, see text for details. Left: Fig 
2a the acute angle case; right: Fig 2b the obtuse angle case. 
 
Now we can apply Foster’s criterion. Considering class 
C0 and the corresponding transition law, with g(x) = ||x||², 
we have: 

( )( ) ( ) ( )( ) ( )
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At this point, using geometrical properties 1., 2. and 3., it 
can be shown that there exist a positive real number η 
such that : 
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DE

x

DEx
 (14) 

when ||x|| is large enough. We thus have  
 ( )( ) ( ) η−<−= xYgxY|YgE 2001  (15) 

which tends to minus infinity for ||x|| tending to infinity. 
Thus, finally, Foster's criterion can be applied since, for 
Y0=x large enough, we obtain  
 ( )( ) ( ) −∞→−= 001 YgxY|YgE . (16) 
Thus the chain Yt is ergodic, and the transition law is 
stationary. 

5 Experimental Results 
The method proposed in this paper is illustrated here on 
two time series. The first one is the SantaFe A series: a 
laser series presented in [9]. In this case the forecasting 
horizon k is equal to 1. The second series represents the 
hourly electrical load in Poland from 1989 to 1996. The 
forecasting horizon is equal to 24 (corresponding to one 
day) in this second data set. 
The model (i.e. the double SOM string and the transition 
table) is trained on a learning set. The optimal number of 
parameters (the numbers nr and nd of centroids in each 
SOM) is chosen in order to maximize the performances 
on a validation set, according to criterion  

 ( )∑
∈

++ −=
ValidSetY

ttMSE
t

ŶYe
2

11 . (17) 

Finally, this optimal model is applied on a test set in order 
to evaluate the performances on new data.  
Before using this model for simulation, a new learning is 
done with a new learning set obtained from the 
reassembled learning and validation sets. This new 
learning is only performed for the model with optimal nr 
and nd.  

5.1 SantaFe A Times Series 
The initial data set has been divided in three subsets: the 
learning set with 6000 data, the validation set with 2000 
data, and test set with 100 data. The regressors Yt are 
obtained as  
 [ ]65321 −−−−−= ttttttt yyyyyyY . (18) 
This choice is here made a priori, according to previous 
experience on this series [9]; as mentioned in section 2, 
the purpose here is not to discuss about the structure of 
the regressor. 
Note that the best neural network models described in [9] 
do not predict much more than 30 data, making a 100-
data test set a "long-term" forecasting. 
In this simulation, Kohonen strings of 1 to 200 centroids 
in each space have been used; all 40 000 possible models 
have been tested. The best model among them has 179 
centroids in the regressor space and 161 centroids in the 
deformation space.  
After learning this model on both the learning and 
validation sets, 1000 simulations were performed on a 
100-steps horizon. Then the mean and confidence interval 
at 95% level were computed, giving information on the 
time series trends.  



Fig. 3. presents the mean of the 1000 simulations 
compared to the true values, together with the confidence 
interval at 95% level. Fig 4. shows a zoom on the first 30 
values. In Fig. 5, we can see 100 simulations for the same 
30 values. Note the stability obtained through the 
replications. Fig. 6 shows the code vectors and regressors 
(resp. deformations) in each class. For simplicity, those 
curves come from a simpler model, with nr = 6 and nd = 8, 
its transition table being shown in Table 1. 

 
Fig. 3  Comparison between the mean of the 1000 simulations 
and the true values, together with confidence intervals at 95% 
level. 

 
Fig. 4  Comparison for the first 30 values between the mean of 
the 1000 simulations and the true values, together with 
confidence intervals at 95% level. 

 
Fig. 5  100 simulations picked out at random from the 1000 
simulations made for the Santa Fe A long-term forecasting.  

 
Fig. 6  The code vectors and associated curves in the regressor 
(top) and deformation (bottom) spaces. The code vectors are 
represented in white as 6-dimensional vectors (according to Eq. 
(18)). Regressors (resp. deformations) belonging to each class 
are shown on black. (A simpler model was chosen with nr = 6 
and nd = 8). 
 

0.121 0 0 0 0 0 0.226 0.653 
0.668 0.302 0.002 0 0.001 0.003 0.019 0.005 
0.049 0.545 0.406 0 0 0 0 0 
0.025 0 0.304 0.543 0.127 0.001 0 0 
0.002 0 0 0 0.508 0.476 0.014 0 
0.060 0 0 0 0.001 0.337 0.561 0.041 

 
Table 1  Example of transition table, here with nr = 6 and nd = 8 
as in Fig. 6. Note that for each line, the sum of the transition 
values equal one. 

5.2 Electrical load  
For our second example, we use the Polish electrical load 
time series. This series contains hourly values from 1989 
to 1996. This is an illustration of the case k>1, since it 
seems natural to predict the 24 next values in one step 
(the next day). 
Ignoring the best regressor, different combinations were 
tried. The results concern regressors constructed with the 
daily 24 values for a few past days. More precisely, we 
take today’s 24 values, plus yesterday, two, six and seven 
days ago. The regressors are thus of dimension 120. 
Again, this choice is made a priori since founding the 
optimal regressor is not our goal here.  
In this second example, the learning set contains 2000 
data of dimension 120, the validation set has 800 data, 
and test set 200 data.  
Tested models have 5 to 200 centroids in each space, by 
steps of 5. The best model has 160 and 140 centroids in 
the regressor and deformation spaces respectively and is 
trained again on the joined learning and validation sets. 
Then, 1000 simulations are performed, and the mean and 
confidence interval at 95% level computed.  
Fig. 7. presents the mean of the 1000 simulations 
compared to the true values, together with the confidence 
interval at 95% level,  zoomed on the first 240 values (10 
days). In Fig. 8, we can see the first 1500 predicted values 
(thus more than two months), compared to the true values 
(confidence interval have been removed for clarity). 
Long-term simulation stability is highlighted in Fig. 9.  



 
Fig. 7  Comparison between the mean of the 1000 simulations 
and the true values, together with confidence intervals at 95% 
level. Here we can see the 240 first values (10 days). 

 

 
Fig. 8  Comparison between the mean of the 1000 simulations 
and the true values. Here we can see the 1500 first predicted 
values (more than 2 months). 

 
Fig. 9  As in Fig. 5, 100 simulations picked out at random from 
the 1000 simulations. Here again, note the regularity obtained 
for the different replications.  

Conclusion 
In this paper, a new specific method for achieving long 
term forecasting using double SOM is presented. The 
main argument proving the stability of the method, and 
thus its validity in long-term prediction context, is 
presented, and a sketch of its prove is given.  

The long-term forecasting capacities of the method are 
highlighted for a classical benchmark as the Santa Fe A 
time series as well as for a real-world application, an 
electrical load time series. 
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