Radial-Basis Function Networks

Radial-Basis Function Networks

/ Origin: Cover's theorem
/ Interpolation problem
// Regularization theory
/ / Generalized RBFN
/ Universal approximation
/ Comparison with MLP
/ RBFN = kernel regression
// Learning
/ Centers
/ Widths
/ Multiplying factors
/ Other forms

Michel Verleysen

Origin: Covers' theorem

/ Covers' theorem on separability of patterns (1965)
/ $\boldsymbol{x}^{1}, \boldsymbol{x}^{2}, \ldots, \boldsymbol{x}^{P}$ assigned to two classes $C^{1} C^{2}$
$/ / \varphi$-separability:

$$
\exists \boldsymbol{w} \left\lvert\, \begin{cases}\boldsymbol{w}^{T} \varphi(\boldsymbol{x})>0 & \boldsymbol{x} \in C^{1} \\ \boldsymbol{w}^{T} \varphi(\boldsymbol{x})<0 & \boldsymbol{x} \in C^{2}\end{cases}\right.
$$

/ Cover's theorem:
/ $/$ non-linear functions $\varphi(\boldsymbol{x})$
/ dimension hidden space > dimension input space
\rightarrow probability of separability closer to 1

Interpolation problem

/ $/$ Given points $\left(\boldsymbol{x}^{k}, t^{k}\right), \boldsymbol{x}^{k} \in \mathfrak{R}^{d}, t^{k} \in \mathfrak{R}, 1 \leq k \leq P$:
μ Find $F: \mathfrak{R}^{d} \rightarrow \mathfrak{R}$ that satisfies

$$
F\left(\boldsymbol{x}^{k}\right)=t^{k}, k=1 \ldots P
$$

// RBF technique (Powell, 1988):

$$
F(\boldsymbol{x})=\sum_{k=1}^{P} w_{k} \varphi\left(\left\|\boldsymbol{x}-\boldsymbol{x}^{k}\right\|\right)
$$

/ $\varphi\left(\left\|\boldsymbol{x}-\boldsymbol{x}^{k}\right\|\right)$ are arbitrary non-linear functions (RBF)
$/$ as many functions as data points
/ centers fixed at known points \boldsymbol{x}^{k}

Interpolation problem

$$
\begin{aligned}
F\left(\boldsymbol{x}^{k}\right) & =t^{k} \\
& F(\boldsymbol{x})=\sum_{k=1}^{P} w_{k} \varphi\left(\left\|\boldsymbol{x}-\boldsymbol{x}^{k}\right\|\right) \\
& {\left[\begin{array}{cccc}
\varphi_{11} & \varphi_{12} & \cdots & \varphi_{1 P} \\
\varphi_{Q_{12}} & \varphi_{22} & \cdots & \varphi_{2 P} \\
\vdots & \vdots & \ddots & \vdots \\
\varphi_{P 1} & \varphi_{P 2} & \cdots & \varphi_{P P}
\end{array}\right]\left[\begin{array}{c}
w_{1} \\
w_{2} \\
\vdots \\
w_{P}
\end{array}\right]=\left[\begin{array}{c}
t^{1} \\
t^{2} \\
\vdots \\
t^{P}
\end{array}\right] \quad }
\end{aligned} \quad \begin{aligned}
& \text { where } \\
& \left.\varphi_{k 1}=\varphi\left\|\boldsymbol{x}^{k}-\boldsymbol{x}^{\prime}\right\|\right)
\end{aligned}
$$

/ Into matrix form: $\Phi \boldsymbol{w}=\boldsymbol{x} \rightarrow \boldsymbol{w}=\Phi^{-1} \boldsymbol{x}$
/ Vital question: is Φ non-singular ?

Michelli's theorem

$/ /$ If points \boldsymbol{x}^{k} are distinct, Φ is non-singular (regardless of the dimension of the input space)
/. Valid for a large class of RBF functions:

$$
\begin{array}{ll|l}
\varphi(\boldsymbol{x})=\sqrt{\|\boldsymbol{x}-\boldsymbol{c}\|^{2}+k^{2}} & (k>0) & \text { non-localized function } \\
\varphi(\boldsymbol{x})=\frac{1}{\sqrt{\|\boldsymbol{x}-\boldsymbol{c}\|^{2}+k^{2}}} & & \\
\varphi(\boldsymbol{x})=\exp \left(-\frac{\|\boldsymbol{x}-\boldsymbol{c}\|^{2}}{2 \sigma^{2}}\right) & (\sigma>0) & \text { localized functions }
\end{array}
$$

Learning: ill-posed problem

/ Necessity for regularization
/ Error criterion:

$$
E(F)=\frac{1}{2 P} \sum_{k=1}^{P}\left(t^{k}-F\left(\boldsymbol{x}^{k}\right)\right)+\lambda \frac{1}{2} C(\boldsymbol{w})
$$

Solution to the regularization problem

// Poggio \& Girosi (1990):
$/ /$ if $C(w)$ is a (problem-dependent) linear differential operator, the solution to

$$
E(F)=\frac{1}{2 P} \sum_{k=1}^{P}\left(t^{k}-F\left(\boldsymbol{x}^{k}\right)\right)+\lambda \frac{1}{2} C(\boldsymbol{w})
$$

is of the following form:

$$
F(\boldsymbol{x})=\sum_{k=1}^{P} w_{k} G\left(\boldsymbol{x}, \boldsymbol{x}^{k}\right)
$$

where
$G()$ is a Green's function,
$\boldsymbol{w}=(\boldsymbol{G}+\lambda \boldsymbol{I})^{-1} \boldsymbol{t}$
$G_{k l}=\boldsymbol{G}\left(\boldsymbol{x}^{k}, \boldsymbol{x}^{\prime}\right)$

Interpolation - Regularization

Interpolation
$F(\boldsymbol{x})=\sum_{k=1}^{P} w_{k} \varphi\left(\left\|\boldsymbol{x}-\boldsymbol{x}^{k}\right\|\right)$
$\boldsymbol{w}=\boldsymbol{\Phi}^{-1} \boldsymbol{x}$
/ Exact interpolator
/ Possible RBF:
$\varphi\left(\boldsymbol{x}, \boldsymbol{x}^{k}\right)=\exp \left(-\frac{\left\|\boldsymbol{x}-\boldsymbol{x}^{k}\right\|^{2}}{2 \sigma^{2}}\right)$

Regularization
$F(\boldsymbol{x})=\sum_{k=1}^{P} w_{k} G\left(\boldsymbol{x}, \boldsymbol{x}^{k}\right)$
$\boldsymbol{w}=(\boldsymbol{G}+\lambda \boldsymbol{I})^{-1} \boldsymbol{t}$
/ Exact interpolator
/ Equal to the «interpolation» solution iff $\lambda=0$
/ Example of Green's function: $G\left(\boldsymbol{x}, \boldsymbol{x}^{k}\right)=\exp \left(-\frac{\left\|\boldsymbol{x}-\boldsymbol{x}^{k}\right\|^{2}}{2 \sigma^{2}}\right)$

One RBF / Green's function for each learning pattern!

Generalized RBFN (GRBFN - RBFN)

/ As many radial functions as learning patterns:
// computationally (too) intensive (inversion of $P \times P$ matrix grows with P^{3})
/ ill-conditioned matrix
// regularization not easy (problem-specific)
\rightarrow Generalized RBFN approach!

$$
F(\boldsymbol{x})=\sum_{i=1}^{K} w_{i} \varphi\left(\left\|\boldsymbol{x}-\boldsymbol{c}_{i}\right\|\right)
$$

Typically:
/ $K \ll P$

$$
/ \varphi\left(\left\|\boldsymbol{x}-\boldsymbol{c}_{i}\right\|\right)=\exp \left(-\frac{\left\|\boldsymbol{x}-\boldsymbol{c}_{i}\right\|^{2}}{2}\right) \quad \begin{aligned}
& \text { Parameters: } \\
& \boldsymbol{c}_{i}, \sigma_{i}, w_{i}
\end{aligned}
$$

Radial-Basis Function Networks (RBFN)

$F(\boldsymbol{x})=\sum_{i=1}^{K} w_{i} \varphi\left(\left\|\boldsymbol{x}-\boldsymbol{c}_{i}\right\|\right)$

$$
\varphi\left(\left\|\boldsymbol{x}-\boldsymbol{c}_{i}\right\|\right)=\exp \left(-\frac{\left\|\boldsymbol{x}-\boldsymbol{c}_{i}\right\|^{2}}{2 \sigma_{i}{ }^{2}}\right)
$$

// Possibilities:
/ several outputs (common hidden layer)
$/ /$ bias (recommended) (see extensions)

RBFN: universal approximation

/ Park \& Sandberg 1991:
/ For any continuous input-output mapping function $f(x)$

$$
\exists F(\boldsymbol{x})=\sum_{i=1}^{K} w_{i} \varphi\left(\left\|\boldsymbol{x}-\boldsymbol{c}_{i}\right\|\right) \mid L_{p}(f(\boldsymbol{x}), F(\boldsymbol{x}))<\varepsilon \quad(\varepsilon>0, p \in[1, \infty])
$$

$/ /$ The theorem is stronger (radial summetry not needed)
/ K not specified
/ Provides a theoretical basis for practical RBFN!

RBFN and kernel regression

/ non-linear regression model

$$
t^{k}=f\left(\boldsymbol{x}^{k}\right)+\varepsilon^{k}=y^{k}+\varepsilon^{k}, 1 \leq k \leq P
$$

$/ /$ estimation of $f(\boldsymbol{x})$: average of t around \boldsymbol{x}. More precisely:

$$
\begin{aligned}
f(\boldsymbol{x}) & =E[y \mid \boldsymbol{x}] \\
& =\int_{-\infty}^{\infty} y f_{\boldsymbol{Y}}(y \mid \boldsymbol{x}) d y \\
& =\frac{\int_{-\infty}^{\infty} y f_{\boldsymbol{X}, Y}(\boldsymbol{x}, y) d y}{f_{\boldsymbol{x}}(\boldsymbol{x})}
\end{aligned}
$$

Need for estimates of $f_{\boldsymbol{X}, Y}(\boldsymbol{x}, \boldsymbol{y})$ and $f_{\boldsymbol{X}}(\boldsymbol{x})$
\rightarrow Parzen-Rosenblatt density estimator

Parzen-Rosenblatt density estimator

$$
\hat{f}_{\boldsymbol{x}}(\boldsymbol{x})=\frac{1}{P h^{d}} \sum_{k=1}^{P} K\left(\frac{\boldsymbol{x}-\boldsymbol{x}^{k}}{h}\right)
$$

with $K()$ continuous, bounded, symmetric about the origin, with maximum value at 0 , and with unit integral,
is consistent (asymptotically unbiased).
/ Estimation of

$$
\hat{f}_{\boldsymbol{X}, Y}(\boldsymbol{x}, y)=\frac{1}{P h^{d+1}} \sum_{k=1}^{P} K\left(\frac{\boldsymbol{x}-\boldsymbol{x}^{k}}{h}\right) K\left(\frac{y-y^{k}}{h}\right)
$$

RBFN and kernel regression

$$
\begin{aligned}
\hat{f}(\boldsymbol{x}) & =\frac{\int_{-\infty}^{\infty} y \hat{f}_{\boldsymbol{X}}, Y(\boldsymbol{x}, y) d y}{f_{\boldsymbol{X}}(\boldsymbol{x})} \quad f(\boldsymbol{x})=\frac{\int_{-\infty}^{\infty} y f_{\boldsymbol{X}, Y}(\boldsymbol{x}, y) d y}{f_{\boldsymbol{X}}(\boldsymbol{x})} \\
& =\frac{\sum_{k=1}^{P} y^{k} K\left(\frac{\boldsymbol{x}-\boldsymbol{x}^{k}}{h}\right)}{\sum_{k=1}^{P} K\left(\frac{\boldsymbol{x}-\boldsymbol{x}^{k}}{h}\right)}
\end{aligned}
$$

/ Weighted average of y^{i}
/ $/$ called Nadaraya-Watson estimator (1964)
/ equivalent to Normalized RBFN in the unregularized context

RBFN: learning strategies

$$
F(\boldsymbol{x})=\sum_{i=1}^{K} w_{i} \varphi\left(\left\|\boldsymbol{x}-\boldsymbol{c}_{i}\right\|\right) \quad \varphi\left(\left\|\boldsymbol{x}-\boldsymbol{c}_{i}\right\|\right)=\exp \left(-\frac{\left\|\boldsymbol{x}-\boldsymbol{c}_{i}\right\|^{2}}{2 \sigma_{i}^{2}}\right)
$$

// Parameters to be determined: $\boldsymbol{c}_{i}, \sigma_{i}, w_{i}$
// Traditional learning strategy: splitted computation

1. centers \boldsymbol{c}_{i}
2. widths σ_{i}
3. weights w_{i}

RBFN: computation of centers

/ Idea: centers \boldsymbol{c}_{i} must have the (density) properties of learning points \boldsymbol{x}^{k}
\rightarrow vector quantization
// selected at random (in learning set)
/ competitive learning
// frequency-sensitive learning
/ Kohonen maps
/ This phase only uses the \boldsymbol{x}^{k} information, not the t^{k}

RBFN: computation of widths

II Universal approximation property: valid with identical widths / In practice (limited learning set): variable widths σ_{i}
/ Idea: RBFN use local clusters

$/ /$ choose σ_{i} according to standard deviation of clusters

RFBN: computation of weights

/ Problem becomes linear!
/2 Solution of least square criterion $E(F)=\frac{1}{2 P} \sum_{k=1}^{P}\left(t^{k}-F\left(\boldsymbol{x}^{k}\right)\right)$ leads to

$$
\boldsymbol{w}=\boldsymbol{\Phi}^{+} \boldsymbol{t}=\left(\boldsymbol{\Phi}^{T} \boldsymbol{\phi}\right)^{-1} \boldsymbol{\Phi}^{T}
$$

where

$$
\boldsymbol{\Phi} \equiv \varphi_{k i}=\varphi\left(\left\|\boldsymbol{x}^{k}-\boldsymbol{c}_{i}\right\|\right)
$$

/ In practise: use SVD !

RBFN: gradient descent

/ Once $\boldsymbol{c}_{j}, \sigma_{j}, w_{i}$ have been set by the previous method, possibility of gradient descent on all parameters
/ $/$ Some improvement, but
//learning speed
/ local minima
$/ /$ risk of non-local basis functions
/a etc.

More elaborated models

$/ /$ Add constant and linear terms

$$
F(\boldsymbol{x})=\sum_{i=1}^{K} w_{i} \exp \left(-\frac{\left\|\boldsymbol{x}-\boldsymbol{c}_{i}\right\|^{2}}{2 \sigma_{i}{ }^{2}}\right)+\sum_{i=1}^{d} w_{i}^{\prime} x_{i}+w_{0}^{\prime}
$$

good idea (very difficult to approximate a constant with kernels...)
/ U Use normalized RBFN

$$
F(\boldsymbol{x})=\sum_{i=1}^{K} w_{i} \frac{\exp \left(-\frac{\left\|\boldsymbol{x}-\boldsymbol{c}_{i}\right\|^{2}}{2 \sigma_{i}{ }^{2}}\right)}{\sum_{j=1}^{K} \exp \left(-\frac{\left\|\boldsymbol{x}-\boldsymbol{c}_{j}\right\|^{2}}{2 \sigma_{j}{ }^{2}}\right)}
$$

basis functions are bouded $[0,1] \rightarrow$ can be interpreted as probability values (classification)

Back to the widths...

\mathscr{L} choose σ_{i} according to standard deviation of clusters
/ In the literature:
$/ / \sigma=d_{\text {max }} / \sqrt{2 K}$ where $d_{\text {max }}=$ maximum distance between centroids [1] / $\sigma_{i}=\frac{1}{p} \sqrt{\sum_{j=1}^{p}\left\|\boldsymbol{c}_{i}-\boldsymbol{c}_{j}\right\|^{2}}$ where index j scans the p nearest centroids to \boldsymbol{c}_{i} [2] / $\sigma_{i}=r \min _{j}\left(\left\|\boldsymbol{c}_{i}-\boldsymbol{c}_{j}\right\|\right)$ where r is an overlap constant [3]
\qquad
[1] S. Haykin, "Neural Networks a Comprehensive Foundation", Prentice-Hall Inc, second edition, 1999.
[2] J. Moody and C. J. Darken, "Fast learning in networks of locally-tuned processing units", Neural Computation 1, pp. 281-294, 1989.
[3] A. Saha and J. D. Keeler, "Algorithms for Better Representation and Faster Learning in Radial Basis Function Networks", Advances in Neural Information Processing Systems 2, Edited by David S. Touretzky, pp. 482-489, 1989.

Basic example

// Approximation of $f(\boldsymbol{x})=1$ with a d-dimensional RBFN
/ In theory: identical w_{i}
/ $/$ Experimentally: side effects
\rightarrow only middle taken into account

Basic example: erros vs space dimension

Basic example: local decomposition?

Multiple local minima in error curve

/ Choose the first minimum to preserve the locality of clusters

/ The first local minimum is usually less sensitive to variability

Some concluding comments

/ RBFN: easy learning (compared to MLP)
$/ /$ in a cross-validation scheme: important!
// Many RBFN models
// Even more RBFN learning schemes...
$/ /$ Results not very sensitive to unsupervised part of learning $\left(\boldsymbol{c}_{i}, \sigma_{i}\right)$
/״ Open work for a priori (proble-dependent) choice of widths σ_{i}

Sources and references

Most of the basic concepts developed in these slides come from the excellent book:
/ Neural networks - a comprehensive foundation, S. Haykin, Macmillan College Publishing Company, 1994.
// Some supplementary comments come from the tutorial on RBF:
/ An overview of Radial Basis Function Networks, J. Ghosh \& A. Nag, in: Radial Basis Function Networks 2, R.J. Howlett \& L.C. Jain eds., Physica-Verlag, 2001.
// The results on the basic exemple were generated by my colleague N. Benoudjit, and are submitted for publication.

