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Radial-Basis Function Networks

p Origin: Cover’s theorem
p Interpolation problem
p Regularization theory
p Generalized RBFN

p Universal approximation
p Comparison with MLP
p RBFN = kernel regression

p Learning
p Centers
p Widths
p Multiplying factors
p Other forms
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Origin: Covers’ theorem

p Covers’ theorem on separability of patterns (1965)

p x1, x2,…, xP assigned to two classes C1 C2

p ϕ-separability:

p Cover’s theorem:
p non-linear functions ϕ(x)
p dimension hidden space > dimension input space

→ probability of separability closer to 1

p Example
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Interpolation problem

p Given points (xk, tk), xk ∈ℜ d, tk ∈ℜ , 1≤k ≤P :

p Find F : ℜ d → ℜ that satisfies

p RBF technique (Powell, 1988):

p are arbitrary non-linear functions (RBF)

p as many functions as data points
p centers fixed at known points xk
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Interpolation problem

p Into matrix form: 

p Vital question: is Φ non-singular ?
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Michelli’s theorem

p If points xk are distinct, Φ is non-singular (regardless of the
dimension of the input space) 

p Valid for a large class of RBF functions:
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Learning: ill-posed problem

p Necessity for regularization

p Error criterion: 

t

x

( ) ( )( ) ( )wx CFt
P

FE
P

k

kk

2
1

2
1

1
λ+−= ∑

=

MSE regularization

Michel Verleysen Radial-Basis Function Networks - 8

Solution to the regularization problem

p Poggio & Girosi (1990):
p if C(w) is a (problem-dependent) linear differential operator, the

solution to

is of the following form:

where G() is a Green’s function,

Gkl = G(xk,xl)
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Interpolation - Regularization

p Interpolation

p Exact interpolator

p Possible RBF:

p Regularization

p Exact interpolator
p Equal to the « interpolation » 

solution iff λ=0
p Example of Green’s function:
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One RBF / Green’s function for each learning pattern!
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Generalized RBFN (GRBFN – RBFN)

p As many radial functions as learning patterns:
p computationally (too) intensive 

(inversion of PxP matrix grows with P3)
p ill-conditioned matrix
p regularization not easy (problem-specific)

→ Generalized RBFN approach!

Typically:
p K << P

p
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Radial-Basis Function Networks (RBFN)

p Possibilities:
p several outputs (common hidden layer)

p bias (recommended) (see extensions)
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RBFN: universal approximation

p Park & Sandberg 1991:

p For any continuous input-output mapping function f(x)

p The theorem is stronger (radial summetry not needed)
p K not specified
p Provides a theoretical basis for practical RBFN!
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RBFN and kernel regression

p non-linear regression model

p estimation of f(x): average of t around x.  More precisely:

p Need for estimates of and

→ Parzen-Rosenblatt density estimator
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Parzen-Rosenblatt density estimator

with K() continuous, bounded, symmetric about the origin, with
maximum value at 0, and with unit integral,

is consistent (asymptotically unbiased).

p Estimation of
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RBFN and kernel regression

p Weighted average of yi

p called Nadaraya-Watson estimator (1964)

p equivalent to Normalized RBFN in the unregularized context
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RBFN ↔ MLP

p RBFN
p single hidden layer

p non-linear hidden layer
linear output layer

p argument of hidden units:
Euclidean norm

p universal approximation 
property

p local approximators
p splitted learning

p MLP
p single or multiple hidden layers

p non-linear hidden layer
linear or non-linear output layer

p argument of hidden units:
scalar product

p universal approximation 
property

p global approximators
p global learning
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RBFN: learning strategies

p Parameters to be determined: ci, σi, wi

p Traditional learning strategy: splitted computation

1. centers ci

2. widths σi

3. weights wi
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RBFN: computation of centers

p Idea: centers ci must have the (density) properties of learning
points xk

→ vector quantization

p selected at random (in learning set)
p competitive learning

p frequency-sensitive learning
p Kohonen maps

p This phase only uses the xk information, not the tk
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RBFN: computation of widths

p Universal approximation property: valid with identical widths

p In practice (limited learning set): variable widths σi

p Idea: RBFN use local clusters

p choose σi according to standard deviation of clusters
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RFBN: computation of weights

p Problem becomes linear !

p Solution of least square criterion

leads to

where

p In practise: use SVD !

( )














σ
−

−=−ϕ 2

2

2
exp

i

i
i

cx
cx( ) ( )∑

=
−ϕ=

K

i
iiwF

1
cxx

constants !

( ) ( )( )∑
=

−=
P

k

kk Ft
P

FE
12

1
x

( ) TT ΦΦΦtΦw
1−+ ==

( )i
k

ki cxΦ −ϕ=ϕ≡



11

Michel Verleysen Radial-Basis Function Networks - 21

RBFN: gradient descent

p 3-steps method:

p Once ci, σi, wi have been set by the previous method,
possibility of gradient descent on all parameters

p Some improvement, but 
p learning speed
p local minima
p risk of non-local basis functions
p etc.
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More elaborated models

p Add constant and linear terms

good idea (very difficult to approximate a constant with kernels…)

p Use normalized RBFN

basis functions are bouded [0,1] → can be interpreted as probability
values (classification)
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Back to the widths…

p choose σi according to standard deviation of clusters
p In the literature:

p where dmax = maximum distance between centroids [1]  

p where index j scans the p nearest centroids to ci [2]  

p where r is an overlap constant [3]

p …..

[1] S. Haykin, "Neural Networks a Comprehensive Foundation", Prentice-Hall Inc, second edition, 1999.
[2] J. Moody and C. J. Darken, "Fast learning in networks of locally-tuned processing units", Neural Computation 1, pp. 281-294, 1989.
[3] A. Saha and J. D. Keeler, ''Algorithms for Better Representation and Faster Learning in Radial Basis Function Networks", Advances in 

Neural Information Processing Systems 2, Edited by David S. Touretzky, pp. 482-489, 1989. 
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p Approximation of f(x) = 1 with a d-dimensional RBFN

p In theory: identical wi

p Experimentally: side effects

→ only middle taken into account

p Error versus width

Basic example
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Basic example: erros vs space dimension

Michel Verleysen Radial-Basis Function Networks - 26

Basic example: local decomposition?



14

Michel Verleysen Radial-Basis Function Networks - 27

Multiple local minima in error curve

p Choose the first minimum to preserve the locality of clusters

p The first local minimum is usually less sensitive to variability
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Some concluding comments

p RBFN: easy learning (compared to MLP)
p in a cross-validation scheme: important!

p Many RBFN models

p Even more RBFN learning schemes…

p Results not very sensitive to unsupervised part of learning (ci, σi)

p Open work for a priori (proble-dependent) choice of widths σi
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Sources and references

p Most of the basic concepts developed in these slides come
from the excellent book:
p Neural networks – a comprehensive foundation, S. Haykin, 

Macmillan College Publishing Company, 1994.

p Some supplementary comments come from the tutorial on 
RBF:
p An overview of Radial Basis Function Networks, J. Ghosh & A. 

Nag, in: Radial Basis Function Networks 2, R.J. Howlett & L.C.
Jain eds., Physica-Verlag, 2001.

p The results on the basic exemple were generated by my
colleague N. Benoudjit, and are submitted for publication. 


