Convergence rates of spectral distributions of large sample covariance matrices

Z. D. BAI *
Dept. of Stat. \& Appl. Prob.
Natl. U. of Singapore
matbaizd@nus.edu.sg

Baiqi Miao ${ }^{\dagger}$
Dept. of Stat. \& Fin.
U. of Sci. \& Tech. of China
bqmiao@ustc.edu.cn

Jianfeng YAO
SAMOS-MATISSE
Université Paris I
yao@univ-paris1.fr

March 17, 2000

Abstract

In this paper, we improve known results on the convergence rates of spectral distributions of large dimensional sample covariance matrices of size $p \times n$. Depending on the limiting value y of the ratio p / n and by using the tool of Stieltjes transforms, we first prove that the expected spectral distribution converges to the limiting Marčenko-Pastur distribution at a rate of $O\left(n^{-\frac{1}{2}}\right)$ for $y \notin\{0,1\}$, and of $O\left(n^{-\frac{1}{4}}\right)$ for $y=1$, under the assumption that the entries have a finite 8 -th order moment. Furthermore, the rates for both the convergence in probability and the almost sure convergence are investigated.

AMS 1991 subject classification: 60F99.

Keywords and phrases: Convergence rate, random matrix, spectral distribution, Mančhenko-Pastur distribution

[^0]
1 Introduction

The spectral analysis of large dimensional random matrices has been actively developed in the last decades since the initial contributions of Wigner $(1955,1958)$, see the review by Bai (1999) and the references therein. Various limiting distributions were discovered including the Wigner semicircular law (Wigner, 1955), the Marčenko-Pastur law (Marčenko and Pastur, 1967) and the circular law (Bai,1997).

Let A be an $n \times n$ symmetric matrix, and $\lambda_{1} \leq \cdots \leq \lambda_{n}$ be the eigenvalues of A. The spectral distribution F^{A} of A is defined as

$$
F^{A}(x)=\frac{1}{n} \times \text { number of elements in }\left\{k: \lambda_{k} \leq x\right\} .
$$

Let $\mathbf{X}_{p}=\left(x_{i j}\right)_{p \times n}$ be a $p \times n$ observation matrix whose entries are mutually independent and have a common mean zero and variance 1 . The entries of \mathbf{X}_{p} may depend on n but we suppress the index n for simplicity. In this paper, we consider the sample covariance matrix $\mathbf{S}_{p}=n^{-1} \mathbf{X}_{p} \mathbf{X}_{p}^{\prime}$. Assume that the ratio p / y of sizes tends to a positive limit y as $n \rightarrow \infty$. Under suitable moment conditions on the entries $x_{i j}$'s, it is known that the empirical spectral distribution (ESD) $F_{p}:=F^{\mathbf{S}_{p}}$ converges to the following Marčenko-Pastur distribution F_{y} with index y with density

$$
F_{y}^{\prime}(x)= \begin{cases}\frac{1}{2 \pi x y} \sqrt{(x-a)(b-x)}, & \text { if } a<x<b \\ 0, & \text { otherwise }\end{cases}
$$

where $a=(1-\sqrt{y})^{2}, b=(1+\sqrt{y})^{2}$.
An important question arose here is the problem of the convergence rates. However, no significant progress had been made before the introduction of a novel and powerful tool, namely the Stieltjes transforms, by Bai (1993a,1993b). Using this methodology, Bai (1993b) proved that the expected ESD, $\mathbb{E} F_{p}$ converges to F_{y} at a rate of $O\left(n^{-1 / 4}\right)$ and $O\left(n^{-5 / 48}\right)$ according to $y \neq 1$ or $y=1$, respectively. In a further work by Bai et al. (1997), these rates are also established for the convergence in probability of the ESD F_{p} itself.

In this work, we prove the following theorems which give a significant improvement of these rates.
The following conditions will be used.
(C.1) $\quad \mathbb{E} x_{i j}=0, \quad \mathbb{E} x_{i j}^{2}=1, \quad 1 \leq i \leq p, 1 \leq j \leq n$,
(C.2) $\sup _{i, j, n} \mathbb{E}\left|x_{i j}\right|^{8}<\infty$,
(C.3) $\quad \sum_{i j} \mathbb{E} x_{i j}^{8} I_{\left(\left|x_{i j}\right| \geq \varepsilon \sqrt{n}\right)}=o\left(n^{2}\right)$, for any $\varepsilon>0$.
(C.2') $\quad \sup \mathbb{E}\left|x_{i j}\right|^{k}<\infty$, for all integer $k \geq 1$.
i, j, n
Throughout the text, we use the notation $Z_{n}=O_{p}\left(a_{n}\right)$ if the sequence $\left(a_{n}^{-1} Z_{n}\right)$ is tight, and $Z_{n}=$ $o_{p}\left(a_{n}\right)$ when $a_{n}^{-1} Z_{n}$ tends to 0 in probability. Let be $\|f\|=\sup _{x}|f(x)|$.
Theorem 1.1 Assume that the conditions C.1-2-3 are satisfied. Then

$$
\left\|\mathbb{E} F_{p}-F_{y}\right\|=\left\{\begin{array}{lll}
O\left(n^{-\frac{1}{2}}\right), & \text { if } & 0<y<1 \\
O\left(n^{-\frac{1}{4}}\right), & \text { if } & y=1 .
\end{array}\right.
$$

Theorem 1.2 Assume that the conditions C.1-2-3 are satisfied. Then

$$
\left\|F_{p}-F_{y}\right\|=\left\{\begin{array}{lll}
O_{p}\left(n^{-\frac{2}{5}}\right), & \text { if } & 0<y<1 \\
O_{p}\left(n^{-\frac{2}{9}}\right), & \text { if } y=1
\end{array}\right.
$$

Theorem 1.3 Assume that the conditions C.1-2'-3 are satisfied. Then, for all $\eta>0$ and almost surely,

$$
\left\|F_{p}-F_{y}\right\|=\left\{\begin{array}{lll}
o\left(n^{-\frac{2}{5}+\eta}\right), & \text { if } & y \neq 1 \\
o\left(n^{-\frac{2}{9}+\eta}\right), & \text { if } & y=1
\end{array}\right.
$$

It is worth noticing that the convergence rates given above for the case $0<y<1$ also apply to the case $y>1$, since the last case can be reduced to the first case by interchanging the roles of row and column sizes p and n.

The proofs of these main results will be given in Section 4. To simplify their presentation, we first establish several intermediate results in Section 3 after the introduction of some necessary notations and preliminary consequences in Section 2.

2 Definitions and easy consequences

Throughout the paper, the transpose of a possibly complex matrix \mathbf{A} is denoted by \mathbf{A}^{T}, and its conjugate by $\overline{\mathbf{A}}$. For each fixed p, n and $k=1, \ldots, p$, let us denote by $\mathbf{x}_{k}=\left(x_{k 1}, \ldots, x_{k n}\right)^{T}$ the k-th row of \mathbf{X}_{p} arranged as a column vector, $\mathbf{X}_{p}(k)$ be the $(p-1) \times n$ sub-matrix obtained from \mathbf{X}_{p} by deleting its k-th row. Let us define

$$
\begin{align*}
& \alpha_{k}:=\frac{1}{n} \mathbf{X}_{p}(k) \mathbf{x}_{k}, \quad \mathbf{S}_{k}:=\frac{1}{n} \mathbf{X}_{p}(k) \mathbf{X}_{p}^{T}(k) \quad \mathbf{B}_{k}:=\frac{1}{n} \mathbf{X}_{p}^{T}(k) \mathbf{D}_{k} \mathbf{X}_{p}(k), \\
& \mathbf{B}:=\frac{1}{n} \mathbf{X}_{p}^{T} \mathbf{D} \mathbf{X}_{p} \quad \mathbf{D}_{k}:=\left(\mathbf{S}_{k}-z \mathbf{I}_{p-1}\right)^{-1}, \tag{2.1}\\
& \text { D }:=\left(\mathrm{S}-z \mathbf{I}_{p}\right)^{-1} \text {, } \\
& \boldsymbol{\Gamma}_{k}:=\overline{\mathbf{D}}_{k} \overline{\mathbf{D}}_{k}, \quad \boldsymbol{\Lambda}_{k}:=\mathbf{D}_{k} \mathbf{S}_{k} \overline{\mathbf{D}}_{k} .
\end{align*}
$$

Here \mathbf{I}_{m} is the m-dimensional identity matrix and z a complex number with a positive imaginary part.
Following Bai (1993b), the Stieltjes transform of the spectral distribution F_{p} of the sample covariance matrix \mathbf{S}_{p} is defined for $z=u+i v$ with $v>0$, by

$$
m_{p}(z)=\int_{-\infty}^{\infty} \frac{1}{x-z} d F_{p}(x),
$$

and it is well-known that

$$
m_{p}(z)=\frac{1}{p} \operatorname{tr}\left(\mathbf{S}-z \mathbf{I}_{p}\right)^{-1}
$$

Similarly, the Stieltjes transform of the spectral distribution $F_{p}^{(k)}$ of the sub-matrix \mathbf{S}_{k} satisfies

$$
m_{p}^{(k)}(z)=\int_{-\infty}^{\infty} \frac{1}{x-z} d F_{p}^{(k)}(x)=\frac{1}{p-1} \operatorname{tr}\left(\mathbf{S}_{k}-z \mathbf{I}_{p-1}\right)^{-1} .
$$

Lastly, the Stieltjes transform of the (limiting) Marčenko-Pastur distribution F_{y} is

$$
\begin{align*}
m(z) & :=\int_{-\infty}^{\infty} \frac{1}{x-z} d F_{y}(x) \\
& = \begin{cases}-\frac{y+z-1-\sqrt{(1-y-z)^{2}-4 y}}{2 y z}, & 0<y<1, \\
-\frac{z-\sqrt{z^{2}-4 z}}{2 z}, & y=1 .\end{cases} \tag{2.2}
\end{align*}
$$

Here the square root \sqrt{z} is the one with a positive imaginary part. Bai (1993b) also provided the following bounds for $m(z)$ which will play a key role in next derivations :

$$
m(z) \leq \begin{cases}\frac{1+3 \sqrt{y}}{\sqrt{y}(1-y)}, & 0<y<1 \tag{2.3}\\ \frac{2}{\sqrt{v}}, & y=1\end{cases}
$$

Lemma 2.1 Let $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)^{T}$ and $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)^{T}$ be independent real random vectors with independent elements. Suppose that for all $1 \leq j \leq n, \quad \mathbb{E} x_{j}=E y_{j}=0, \quad \mathbb{E}\left|x_{j}\right|^{2}=$ $\mathbb{E}\left|y_{j}\right|^{2}=1, \mathbb{E}\left|x_{j}\right|^{4} \leq L<\infty$, and that \mathbf{A} is an $n \times n$ complex symmetric matrix. Let $\nu_{k}=$ $\max _{j \leq n}\left(\mathbb{E}\left|x_{j}\right|^{k}, \mathbb{E}\left|y_{j}\right|^{k}\right)$. Then
(i). $\mathbb{E}\left|\mathbf{x}^{T} \mathbf{A} \mathbf{y}\right|^{2}=\operatorname{tr}(\mathbf{A} \overline{\mathbf{A}})$;
(ii). $\mathbb{E}\left|\mathbf{x}^{T} \mathbf{A x}\right|^{2} \leq(L-1) \operatorname{tr}(\mathbf{A} \overline{\mathbf{A}})+|\operatorname{tr} \mathbf{A}|^{2}$;
(iii). $\mathbb{E}\left|\mathbf{x}^{T} \mathbf{A} \mathbf{x}-\operatorname{tr} \mathbf{A}\right|^{2} \leq(L-1)(\operatorname{tr} \mathbf{A} \overline{\mathbf{A}}) ;$
(iv). $\mathbb{E}\left|\mathbf{x}^{T} \mathbf{A x}-\operatorname{tr} \mathbf{A}\right|^{2 k} \leq d_{k}\left[\nu_{4 k} \operatorname{tr}(\mathbf{A} \overline{\mathbf{A}})^{k}+(\operatorname{Ltr}(\mathbf{A} \overline{\mathbf{A}}))^{k}\right] \quad$ for $k \geq 2$ and some positive constant d_{k} depending on k only.

Lemma 2.1 can be proved in an elementary way and is stated in Bai et al. (1997).
Lemma 2.2 Let G_{1} and G_{2} be probability distribution functions and $z=u+i v, v>0$. Then for each positive integer m,

$$
\left|\int_{-\infty}^{\infty} \frac{1}{|x-z|^{m}} d\left(G_{1}(x)-G_{2}(x)\right)\right| \leq \frac{2}{v^{m}}\left\|G_{1}-G_{2}\right\| .
$$

Proof. Let be $G^{*}:=G_{1}-G_{2}$. We have, by integration by parts,

$$
\begin{aligned}
& \left|\int_{-\infty}^{\infty} \frac{1}{|x-z|^{m}} d G^{*}\right| \\
& \quad=\left|-\int_{-\infty}^{\infty} G^{*}(x) d\left[\frac{1}{|x-z|^{m}}\right]\right| \\
& \quad=\left|-\int_{-\infty}^{\operatorname{Re}(z)} G^{*}(x) d\left[\frac{1}{|x-z|^{m}}\right]+\int_{\operatorname{Re}(z)}^{\infty} G^{*}(x) d\left[-\frac{1}{|x-z|^{m}}\right]\right| \\
& \quad \leq\left\|G^{*}\right\|\left\{\int_{-\infty}^{\operatorname{Re}(z)} d\left[\frac{1}{|x-z|^{m}}\right]+\int_{\operatorname{Re}(z)}^{\infty} d\left[-\frac{1}{|x-z|^{m}}\right]\right\} \\
& \quad=\left\|G^{*}\right\|\left\{\left.\frac{1}{|x-z|^{m}}\right|_{-\infty} ^{\operatorname{Re}(z)}+\left(-\left.\frac{1}{|x-z|^{m}}\right|_{\operatorname{Re}(z)} ^{\infty}\right)\right\}=\left\|G^{*}\right\| \frac{2}{v^{m}} .
\end{aligned}
$$

We will need the following auxiliary variables.

$$
\begin{aligned}
\varepsilon_{k} & =-\frac{1}{n} \sum_{j=1}^{n}\left(x_{k j}^{2}-1\right)+\frac{1}{n}\left(\mathbf{x}_{k}{ }^{\prime} \mathbf{B}_{k} \mathbf{x}_{k}-\mathbb{E} t r \mathbf{B}\right), \\
\varepsilon_{k}^{*} & =-\frac{1}{n} \sum_{j=1}^{n}\left(x_{k j}^{2}-1\right)+\frac{1}{n}\left(\mathbf{x}_{k}{ }^{\prime} \mathbf{B}_{k} \mathbf{x}_{k}-\operatorname{tr} \mathbf{B}_{k}\right), \\
\widetilde{\varepsilon}_{k} & =\frac{1}{n}\left(\operatorname{tr} \mathbf{B}_{k}-\mathbb{E} \operatorname{tr} \mathbf{B}_{k}\right)=\frac{z}{n}\left(\operatorname{tr} \mathbf{D}_{k}-\mathbb{E} \operatorname{tr} \mathbf{D}_{k}\right), \\
\pi_{k} & =\frac{1}{n} \mathbb{E}\left(\operatorname{tr} \mathbf{B}_{k}-\operatorname{tr} \mathbf{B}\right)=\frac{z}{n} \mathbb{E}\left(\operatorname{tr} \mathbf{D}_{k}-\operatorname{tr} \mathbf{D}\right)-\frac{1}{n}, \\
\beta_{k} & =-\frac{1}{n} \sum_{j=1}^{n}\left(x_{k j}^{2}-1\right)+z-1+\frac{1}{n} \mathbf{x}_{k}{ }^{\prime} \mathbf{B}_{k} \mathbf{x}_{k}, \\
\beta_{k}^{*} & =z-1+\frac{1}{n} \operatorname{tr} \mathbf{B}_{k}, \\
\beta & =z-1+\frac{1}{n} \operatorname{tr} \mathbf{B}
\end{aligned}
$$

We summarize below some inequalities which will be used in the derivations. Let $\Delta=\| \mathbb{E} F_{p}-$ $F \|$ and $M:=\sup _{i, j, n} \mathbb{E}\left|x_{i j}\right|^{4}$. For fixed (n, p) and $1 \leq k \leq p$, we define the σ-algebra $\mathcal{F}^{(k)}=$ $\sigma\left(\mathrm{x}_{i}: i=1, \ldots, p ; i \neq k\right)$ and $\mathcal{F}_{k}=\sigma\left(\mathrm{x}_{i}: i=1, \ldots, p ; i>k\right)$. Notice that $\mathcal{F}_{k} \subseteq \mathcal{F}^{(k)}$.
(i). (Lemma 3.3 of Bai (1993a)) :

$$
\begin{equation*}
\left|(p-1) F_{p}^{(k)}(x)-p F_{p}(x)\right| \leq 1 . \tag{2.4}
\end{equation*}
$$

(ii). ((3.11) of Bai (1993a)) :

$$
\begin{equation*}
\left|\operatorname{tr} \mathbf{D}-\operatorname{tr} \mathbf{D}_{k}\right|=\left|\int_{-\infty}^{\infty} \frac{d\left[p F_{p}(x)-(p-1) F_{p}^{(k)}(x)\right]}{x-z}\right| \leq v^{-1} . \tag{2.5}
\end{equation*}
$$

(iii). ((4.7) of Bai (1993a)) :

$$
\begin{equation*}
m_{p}(z)=-\frac{1}{p} \sum_{k=1}^{p} \frac{1}{\beta_{k}} . \tag{2.6}
\end{equation*}
$$

(iv). (Lemma 2.2 of Bai et al. (1997)) :

$$
\begin{equation*}
\mathbb{E}\left|m_{p}(z)-\mathbb{E}\left(m_{p}(z)\right)\right|^{2} \leq p^{-1} v^{-2} \tag{2.7}
\end{equation*}
$$

(v). (from $\left.\left|\beta_{k}^{*}\right| \geq \operatorname{Im}\left(\beta_{k}^{*}\right)=v\left(1+n^{-1} \operatorname{tr} \boldsymbol{\Lambda}_{k}\right)\right)$:

$$
\begin{equation*}
\left|\beta_{k}^{\star}\right|^{-1}\left(1+n^{-1} \operatorname{tr} \boldsymbol{\Lambda}_{k}\right) \leq v^{-1} . \tag{2.8}
\end{equation*}
$$

(vi).

$$
\begin{equation*}
\left|\beta_{k}\right| \geq \operatorname{Im}\left(\beta_{k}\right)=v\left(1+\frac{1}{n} \alpha_{k}^{T} \mathbf{D}_{k} \overline{\mathbf{D}_{k}} \alpha_{k}\right) . \tag{2.9}
\end{equation*}
$$

(vii).

$$
\begin{equation*}
\left|1+\frac{1}{n} \alpha_{k}^{T} \mathbf{D}_{k}^{2} \alpha_{k}\right| \leq 1+\frac{1}{n} \alpha_{k}^{T} \mathbf{D}_{k} \overline{\mathbf{D}_{k}} \alpha_{k} . \tag{2.10}
\end{equation*}
$$

Let $\lambda_{k j}, j=1,2, \ldots, p-1$, be the eigenvalues of \mathbf{S}_{k} which can be decomposed in a diagonal form on a basis of orthonormal and real eigenvectors. Let L be a complex matrix having the product form $\mathrm{L}=\mathrm{M}^{\ell} \mathbf{N}^{\ell^{\prime}}$ for some integers ℓ, ℓ^{\prime} and factors M, N equal to one of the matrices $\left\{\mathbf{D}_{k}, \overline{\mathbf{D}}_{k}, \mathbf{B}_{k}, \overline{\mathbf{B}}_{k}\right\}$. An important feature that we will frequently use in the sequel is that such a matrix L can be decomposed into a diagonal form on the same basis of the eigenvectors of \mathbf{S}_{k}. Moreover, the eigenvalues of L can be straightforwardly expressed in term of the $\lambda_{k j}$'s. In particular, we have the following

Lemma 2.3 Assume that $|z| \leq T$ where $T \geq 1$. Then for all integers $\ell \geq 1$

$$
\begin{align*}
& \operatorname{tr}\left(\boldsymbol{\Gamma}_{k}\right)^{\ell} \leq\left(\frac{1}{v^{2}}\right)^{\ell-1} \operatorname{tr} \boldsymbol{\Gamma}_{k} \tag{2.11}\\
& \operatorname{tr}\left(\boldsymbol{\Lambda}_{k}\right)^{\ell} \leq\left(\frac{T}{v^{2}}\right)^{\ell-1} \operatorname{tr} \boldsymbol{\Lambda}_{k} \tag{2.12}
\end{align*}
$$

Proof. (i) The inequality (2.11) follows from

$$
\operatorname{tr}\left(\boldsymbol{\Gamma}_{k}\right)^{\ell}=\sum_{j=1}^{p-1} \frac{1}{\left|\lambda_{k j}-z\right|^{2 \ell}} \leq v^{-2(\ell-1)} \sum_{j=1}^{p-1} \frac{1}{\left|\lambda_{k j}-z\right|^{2}}=v^{-2(\ell-1)} t r \boldsymbol{\Gamma}_{k} .
$$

(ii) For the inequality (2.12), we have

$$
\operatorname{tr}\left(\boldsymbol{\Lambda}_{k}\right)^{\ell}=\sum_{j=1}^{p-1} \frac{\lambda_{k j}^{\ell}}{\left|\lambda_{k j}-z\right|^{2 \ell}} .
$$

The conclusion follows from that The function $\varphi(\lambda):=\lambda^{-1}|\lambda-z|^{2}$ defined on $(0, \infty)$ is convex and has an unique minimum of value φ^{*} satisfying

$$
\varphi^{*}=2\left(\sqrt{u^{2}+v^{2}}\right)-u=2 \frac{v^{2}}{|z|+u} \geq \frac{v^{2}}{T} .
$$

Lemma 2.4 For the Marčenko-Pastur distribution F_{y}, we have

$$
\int_{a}^{b} \frac{1}{|x-z|^{2}} d F_{y}(x) \leq \begin{cases}\frac{1}{(1-y) \sqrt{y}} v^{-1}, & 0<y<1 \tag{2.13}\\ |z|^{-1} v^{-1 / 2}, & y=1\end{cases}
$$

Proof. For $0<y<1$, we have by elementary calculus that the density function $F_{y}{ }^{\prime}(x)$ has an unique maximum of value $(\pi(1-y) \sqrt{y})^{-1}$. Thus

$$
\begin{aligned}
\int_{a}^{b} \frac{1}{|x-z|^{2}} d F_{y}(x) & \leq \frac{1}{\pi(1-y) \sqrt{y}} \int_{a}^{b} \frac{1}{|x-z|^{2}} d x \\
& \leq \frac{1}{(1-y) \sqrt{y}} v^{-1}
\end{aligned}
$$

When $y=1, a=0$ and $b=4$. We find that

$$
\begin{aligned}
& \int_{a}^{b} \frac{1}{|x-z|^{2}} d F_{y}(x) \\
& \quad \leq \frac{1}{\pi} \int_{0}^{4} \frac{d x}{\sqrt{x}\left[(x-u)^{2}+v^{2}\right]} \leq \frac{1}{\pi} \int_{0}^{\infty} \frac{d x}{\sqrt{x}\left[(x-u)^{2}+v^{2}\right]} \leq|z|^{-1} v^{-1 / 2}
\end{aligned}
$$

Lemma 2.5 For the Marčenko-Pastur distribution F_{y}, we have for any $0<v<4 \sqrt{y}$,

$$
\sup _{x} \int_{|u| \leq v}\left|F_{y}(x+u)-F_{y}(x)\right| d u \leq \frac{14 \sqrt{2(1+y)}}{3 \pi y} \frac{1}{\sqrt{v}+(1-\sqrt{y})} v^{2} .
$$

Proof. It is enough to consider the part $0 \leq u \leq v$ only in the integral since the remaining part for $-v \leq u \leq 0$ can be handled in a similar way. Set $x=a+\lambda$ with $\lambda \geq 0$ and $\Phi(\lambda):=$ $\int_{0}^{u}\left[F_{y}(x+u)-F_{y}(x)\right] d u$. Then

$$
\begin{align*}
\Phi(\lambda) & =\int_{0}^{v} d u \int_{x}^{x+u} F_{y}{ }^{\prime}(t) d t=\int_{a+\lambda}^{a+\lambda+v} \frac{a+\lambda+v-t}{2 \pi y t} \sqrt{(t-a)(b-t)} d t \\
& =\int_{\lambda}^{\lambda+v} \frac{\lambda+v-u}{2 \pi y(u+a)} \sqrt{u(4 \sqrt{y}-u)} d u \tag{2.14}
\end{align*}
$$

Let $\phi(u):=(u+a)^{-1} \sqrt{u(4 \sqrt{y}-u)}$.
Case $0<y<1$: We have $a>0$ and the derivative of $\log (\phi(u))^{2}$ is

$$
\frac{1}{u}-\frac{1}{4 \sqrt{y}-u}-\frac{2}{u+a}=\frac{2(2 \sqrt{y} a-(1+y) u)}{u(4 \sqrt{y}-u)(u+a)}
$$

Let $\rho:=(1+y)^{-1}(2 a \sqrt{y})$. Thus $\phi(u)$ is decreasing when $u>\rho$ and increasing when $u<\rho$. Since

$$
\frac{d \Phi(\lambda)}{d \lambda}=\frac{1}{2 \pi y}\left(\int_{\lambda}^{\lambda+v}[\phi(u)-\phi(v)] d u\right),
$$

it follows that for $\lambda>\rho, \Phi(\lambda)$ is decreasing and then $\Phi(\lambda) \leq \Phi(\rho)$; and for $\lambda<\rho-v, \Phi(\lambda)$ is increasing and then $\Phi(\lambda) \leq \Phi(\rho-v)$. Hence $\Phi(\lambda)$ reaches its maximum only for some $\lambda \in$ ($\max (\rho-v, 0), \rho)$. Now suppose that $\lambda \in(\rho-v, \rho)$, it follows from (2.14) that

$$
\begin{aligned}
\Phi(\lambda) \leq & \frac{2 y^{1 / 4}}{2 \pi y} \int_{\lambda}^{\lambda+v} \frac{\lambda+v-u}{u+a} \sqrt{u} d u \\
= & 2\left(\pi y^{3 / 4}\right)^{-1}\{(\lambda+v+a)[(\sqrt{\lambda+v}-\sqrt{\lambda}) \\
& \left.\left.-\sqrt{a}\left(\arctan \sqrt{\frac{\lambda+v}{a}}-\arctan \sqrt{\frac{\lambda}{a}}\right)\right]-\frac{1}{3}\left[(\lambda+v)^{3 / 2}-\lambda^{3 / 2}\right]\right\} .
\end{aligned}
$$

Notice that $-\sqrt{a} \arctan \frac{x}{\sqrt{a}}$ is convex, we get

$$
\frac{1}{\sqrt{a}}\left(\arctan \sqrt{\frac{\lambda+v}{a}}-\arctan \sqrt{\frac{\lambda}{a}}\right) \geq \frac{a}{\lambda+v+a}(\sqrt{\lambda+v}-\sqrt{\lambda}),
$$

and by setting $\lambda^{*}=\sqrt{\lambda+v}-\sqrt{\lambda}$, we have

$$
\begin{align*}
\Phi(\lambda) & \leq \frac{2}{\pi y^{3 / 4}}\left\{(a+\lambda+v)\left(\lambda^{*}-\frac{a}{a+\lambda+v} \lambda^{*}\right)-\left(\lambda^{*}\left(\lambda+\sqrt{\lambda} \lambda^{*}+\frac{1}{3} \lambda^{* 2}\right)\right\}\right. \\
& =\frac{2}{\pi y^{3 / 4}}\left[\sqrt{\lambda} \lambda^{* 2}+\frac{2}{3} \lambda^{* 3}\right] . \tag{2.15}
\end{align*}
$$

Let $c^{2}=\frac{1+y}{2 \sqrt{y}}$. Since $\lambda+v \geq c^{-2} a$, we have

$$
\begin{aligned}
& \frac{\sqrt{\lambda}}{(\sqrt{\lambda+v}+\sqrt{\lambda})^{2}} \leq \frac{c}{\sqrt{a}+\sqrt{v}} \\
& \frac{1}{(\sqrt{\lambda+v}+\sqrt{\lambda})^{3}} \leq \frac{2 c}{(\sqrt{a}+\sqrt{v}) v}
\end{aligned}
$$

Hence

$$
\Phi(\lambda) \leq \frac{2}{\pi y^{3 / 4}} \cdot \frac{7 c}{3(\sqrt{a}+\sqrt{v})} v^{2}=\frac{7 \sqrt{2(1+y)}}{3 \pi y} \frac{1}{\sqrt{v}+(1-\sqrt{y})} v^{2} .
$$

Case $y=1$: Here $a=0$ and

$$
\begin{aligned}
\Phi(\lambda) & =\int_{\lambda}^{\lambda+v} \frac{\lambda+v-u}{2 \pi} \sqrt{\frac{4-u}{u}} d u \\
\frac{d \Phi(\lambda)}{d \lambda} & =\frac{1}{2 \pi} \int_{\lambda}^{\lambda+v}\left[\sqrt{\frac{4-u}{u}}-\sqrt{\frac{4-\lambda}{\lambda}}\right] d u .
\end{aligned}
$$

But $(4-u) / u$ is decreasing for $u>0$, thus $\Phi(\lambda)$ is decreasing for $\lambda \geq 0$. Hence

$$
\Phi(\lambda) \leq \Phi(0)=\int_{0}^{v} \frac{v-u}{2 \pi} \sqrt{\frac{4-u}{u}} d u \leq \frac{2}{\pi} v^{3 / 2} .
$$

Combining these two cases proves the lemma.

3 Intermediate lemmas

In this section, we establish some more technical lemmas. Let $\nu_{\ell}=\sup _{i, j, n}\left\{E\left|x_{i j}\right|^{\ell}\right\}$.
Lemma 3.1 For each $\ell>1 / 2$ with $\nu_{4 \ell}<\infty$, there exist positive constants c_{ℓ} independent of n and v, such that for all n, v satisfying $n v \geq T$, we have

$$
\begin{equation*}
\mathbb{E}\left(\left|\varepsilon_{k}^{*}\right|^{2 \ell} \mid \mathcal{F}^{(k)}\right) \leq c_{\ell} n^{-\ell}\left(1+\frac{1}{n} \operatorname{tr} \boldsymbol{\Lambda}_{k}\right)^{\ell} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbb{E}\left(\left.\frac{\left(\varepsilon_{k}^{*}\right)^{2 \ell}}{\left|\beta_{k}^{*}\right|^{\ell}} \right\rvert\, \mathcal{F}^{(k)}\right) \leq c_{\ell} n^{-\ell} v^{-\ell} \tag{3.2}
\end{equation*}
$$

Proof. We have

$$
\begin{aligned}
\mathbb{E}\left(\left|\varepsilon_{k}^{*}\right|^{2 \ell} \mid \mathcal{F}^{(k)}\right) & =\mathbb{E}\left(\left.\left|-\frac{1}{n} \sum_{j=1}^{n}\left(x_{k j}^{2}-1\right)+\frac{1}{n}\left(\mathbf{x}_{k}^{\prime} \mathbf{B}_{k} \mathbf{x}_{k}-\operatorname{tr} \mathbf{B}_{k}\right)\right|^{2 \ell} \right\rvert\, \mathcal{F}^{(k)}\right) \\
& \leq 2^{2 \ell-1} n^{-2 \ell}\left\{\mathbb{E}\left|\sum_{j=1}^{n}\left(x_{k j}^{2}-1\right)\right|^{2 \ell}+\mathbb{E}\left(\left|\mathbf{x}_{k}^{\prime} \mathbf{B}_{k} \mathbf{x}_{k}-\operatorname{tr} \mathbf{B}_{k}\right|^{2 \ell} \mid \mathcal{F}^{(k)}\right)\right\} \\
& :=A+B .
\end{aligned}
$$

For the first term A, by the Burkholder inequality, we get

$$
\begin{aligned}
& \mathbb{E}\left|\sum_{j=1}^{n}\left(x_{k j}^{2}-1\right)\right|^{2 \ell} \\
& \quad \leq c_{\ell} \mathbb{E}\left[\sum_{j=1}^{n}\left(x_{k j}^{2}-1\right)^{2}\right]^{\ell} \leq c_{\ell} n^{\ell-1} \mathbb{E}\left[\sum_{j=1}^{n}\left(x_{k j}^{2}-1\right)^{2 \ell}\right] \leq c_{\ell} \nu_{4 \ell} n^{\ell}
\end{aligned}
$$

For the second term B, we first notice that

$$
\operatorname{tr}\left(\mathbf{B}_{k} \overline{\mathbf{B}}_{k}\right)=\operatorname{tr} \mathbf{B}_{k}+\bar{z} \operatorname{tr} \mathbf{\Lambda}_{k},
$$

and

$$
\frac{1}{n}\left|\operatorname{tr} \mathbf{B}_{k}\right|=\left|y+\frac{z}{n} \operatorname{tr} \mathbf{D}_{k}\right| \leq 1+\frac{T}{n v} \leq 2
$$

Hence

$$
\frac{1}{n} \operatorname{tr}\left(\mathbf{B}_{k} \overline{\mathbf{B}}_{k}\right) \leq 2+\frac{T}{n} \operatorname{tr} \boldsymbol{\Lambda}_{k} \leq T\left(1+\frac{1}{n} \operatorname{tr} \boldsymbol{\Lambda}_{k}\right) .
$$

Therefore by Lemma 2.1,

$$
\begin{aligned}
& E\left(\left|\mathbf{x}_{k}^{\prime} \mathbf{B}_{k} \mathbf{x}_{k}-\operatorname{tr} \mathbf{B}_{k}\right|^{2 \ell} \mid \mathcal{F}^{(k)}\right) \\
& \quad \leq c_{\ell}\left(\nu_{4 \ell}+M^{\ell}\right)\left(\operatorname{tr} \mathbf{B}_{k} \overline{\mathbf{B}}_{k}\right)^{\ell} \leq c_{\ell} T^{-\ell} n^{-\ell}\left(1+\frac{1}{n} \operatorname{tr} \boldsymbol{\Lambda}_{k}\right)^{\ell}
\end{aligned}
$$

Combining the bounds for A and B proves the first conclusion. The second conclusion immediately follows by taking into account the inequality (2.8).

Lemma 3.2 If $n^{-1 / 2} \leq v<1$, then there are positive constants C_{1}, C_{2} such that for large n and each $k \leq n$,
(i). $\left|\mathbb{E} \operatorname{tr}\left(\mathbf{D}_{k} \overline{\mathbf{D}}_{k}\right)\right| \leq C_{1} p \frac{\Delta+v}{v^{2}}$.
(ii). $\mathbb{E}\left|\varepsilon_{k}^{*}\right|^{2} \leq C_{2} \frac{1}{n}\left(1+|z|^{2} \frac{\Delta+v}{v^{2}}\right)$.

Proof. (i). Recall that $\Delta=\left\|\mathbb{E} F_{p}-F_{y}\right\|$. By Lemma 2.2,

$$
\left|\int_{-\infty}^{\infty} \frac{1}{|x-z|^{2}} d\left(\mathbb{E} F_{p}(x)-F_{y}(x)\right)\right| \leq \frac{2 \Delta}{v^{2}}
$$

Application of Lemmas 2.1 and (2.4) yields that

$$
\begin{aligned}
\left|\mathbb{E} \operatorname{tr}\left(\mathbf{D}_{k} \overline{\mathbf{D}}_{k}\right)\right|= & \left|(p-1) \int_{-\infty}^{\infty} \frac{1}{|x-z|^{2}} d\left[\mathbb{E} F_{p}^{(k)}(x)\right]\right| \\
\leq & \left|\int_{-\infty}^{\infty} \frac{1}{|x-z|^{2}} d\left[(p-1) \mathbb{E} F_{p}^{(k)}(x)-p \mathbb{E} F_{p}(x)\right]\right| \\
& +p\left|\int_{-\infty}^{\infty} \frac{1}{|x-z|^{2}} d\left[\mathbb{E} F_{p}(x)-F_{y}(x)\right]\right|+p\left|\int_{-\infty}^{\infty} \frac{1}{|x-z|^{2}} d F_{y}(x)\right| \\
\leq & \frac{2}{v^{2}}+p \frac{2 \Delta}{v^{2}}+p\left|\int_{-\infty}^{\infty} \frac{1}{|x-z|^{2}} d F_{y}(x)\right| .
\end{aligned}
$$

By Lemma 2.4, the last term is bounded by $C_{3} p v^{-1}$ or $C_{3} p(|z| \sqrt{v})^{-1}$ according to $0<y<1$ or $y=1$. Taking into account the condition $v \sqrt{n} \geq 1$, we have for large $n, p v \geq 2 C_{3}$ for the first case and for the second one, since $\sqrt{v} \leq v \leq|z|, p \sqrt{v} \geq 2 C_{3}$. The conclusion (i) follows in both cases.
(ii). The conclusion follows from (i), (3.1) and the fact

$$
\operatorname{tr} \mathbf{B}_{k} \overline{\mathbf{B}}_{k}=\operatorname{tr}\left(\mathbf{I}_{p-1}+z \mathbf{D}_{k}\right)\left(I+\bar{z} \overline{\mathbf{D}}_{k}\right) \leq 2\left(p+|z|^{2} \operatorname{tr} \mathbf{D}_{k} \overline{\mathbf{D}}_{k}\right)
$$

Let us define $v_{y}=v$ for $0<y<1$ and $v_{y}=\sqrt{v}$ for $y=1$.
Lemma 3.3 Assume $|z| \leq T$ with $T \geq 2$, and $\sqrt{n v} \geq 6 \sqrt{2 T(M+2)}$. Then for large n and a positive constants C_{1},

$$
\begin{equation*}
\sum_{k=1}^{p} \mathbb{E}\left(\left|\beta_{k}^{*}\right|^{-1}\right) \leq C_{1} n\left(\Delta+v_{y}\right) v^{-1} \tag{3.3}
\end{equation*}
$$

Proof. First notice that from the definition of ε_{k}^{*}, we have $\left(\beta_{k}^{*}\right)^{-1}=\beta_{k}^{-1}\left(1+\beta_{k}^{-1} \varepsilon_{k}^{*}\right)$. By (2.5),

$$
\left|\beta_{k}^{*}-\beta\right|=\frac{1}{n}\left|-1+z\left(\operatorname{tr} D_{k}-\operatorname{tr} D\right)\right| \leq \frac{1}{n}\left(1+\frac{|z|}{v}\right) \leq \frac{2 T}{n v} .
$$

Taking account of (2.6) and (3.2), we obtain

$$
\begin{aligned}
& \sum_{k=1}^{p} \mathbb{E}\left(\left|\beta_{k}^{*}\right|^{-1}\right) \\
\leq & \sum_{k=1}^{p} \mathbb{E}\left|\frac{1}{\left|\beta_{k}^{*}\right|}-\frac{1}{|\beta|}\right|+\mathbb{E}\left|\sum_{k=1}^{p}\left(\frac{1}{\beta}-\frac{1}{\beta_{k}^{*}}\right)\right|+\mathbb{E}\left|\sum_{k=1}^{p}\left(\frac{1}{\beta_{k}^{*}}-\frac{1}{\beta_{k}}\right)\right|+\mathbb{E}\left|\sum_{k=1}^{p} \beta_{k}^{-1}\right| \\
\leq & 2 \sum_{k=1}^{p} \mathbb{E} \frac{\left|\beta_{k}^{*}-\beta\right|}{|\beta|\left|\beta_{k}^{*}\right|}+\sum_{k=1}^{p} \mathbb{E} \frac{\left|\varepsilon_{k}^{*}\right|}{\left|\beta_{k}^{*}\right|^{2}}+\sum_{k=1}^{p} \mathbb{E} \frac{\left|\varepsilon_{k}^{*}\right|^{2}}{\left|\beta_{k}\right|\left|\beta_{k}^{*}\right|^{2}}+p \mathbb{E}\left|m_{p}(z)\right| \\
\leq & \frac{4 T}{n v^{2}} \sum_{k=1}^{p} \mathbb{E}\left(\left|\beta_{k}^{*}\right|^{-1}\right)+\sum_{k=1}^{p} \mathbb{E} \frac{\left(\mathbb{E}\left(\left|\varepsilon_{k}^{*}\right|^{2} \mid \mathcal{F}^{(k)}\right)\right)^{1 / 2}}{\left|\beta_{k}^{*}\right|^{2}}+\sum_{k=1}^{p} \mathbb{E} \frac{\mathbb{E}\left(\left|\varepsilon_{k}^{*}\right|^{2} \mid \mathcal{F}^{(k)}\right)}{v\left|\beta_{k}^{*}\right|^{2}}+p \mathbb{E}\left|m_{p}(z)\right| \\
\leq & \left(\frac{4 T}{n v^{2}}+(2 M T)^{1 / 2} n^{-1 / 2} v^{-1}\right) \sum_{k=1}^{p} \mathbb{E}\left(\left|\beta_{k}^{*}\right|^{-1}\right)+\frac{2 M T}{n v^{2}} \sum_{k=1}^{p} \mathbb{E}\left(\left|\beta_{k}^{*}\right|^{-1}\right)+p \mathbb{E}\left|m_{p}(z)\right| \\
\leq & \left(2 T(2+M) v^{-2} n^{-1}+(2 M T)^{1 / 2} n^{-1 / 2} v^{-1}\right) \sum_{k=1}^{p} \mathbb{E}\left(\left|\beta_{k}^{*}\right|^{-1}\right)+p \mathbb{E}\left|m_{p}(z)-\mathbb{E}\left(m_{p}(z)\right)\right| \\
\leq & 2[2 T(2+M)]^{1 / 2} v^{-1} n^{-1 / 2} \sum_{k=1}^{p} \mathbb{E}\left(\left|\beta_{k}^{*}\right|^{-1}\right)+\sqrt{p} v^{-1}+2 p \Delta v^{-1}+p|m(z)| .
\end{aligned}
$$

Since $2[2 T(2+M)]^{1 / 2} v^{-1} n^{-1 / 2}<1 / 3$, we find

$$
\sum_{k=1}^{p} \mathbb{E}\left(\left|\beta_{k}^{*}\right|^{-1}\right) \leq \frac{3}{2}\left(\sqrt{p} v^{-1}+2 p \Delta v^{-1}+p|m(z)|\right)
$$

Notice that for large $n, \frac{1}{2} y n \leq p \leq \frac{3}{2} y n$. The conclusion follows by taking into account the bounds for $m(z)$ given in Eq. (2.3).

Lemma 3.4 Let $z_{k}=\mathbb{E}\left(\operatorname{tr} \mathbf{D} \mid \mathcal{F}_{k-1}\right)-\mathbb{E}\left(\operatorname{tr} \mathbf{D} \mid \mathcal{F}_{k}\right)$. Then $\operatorname{tr} \mathbf{D}-\mathbb{E} \operatorname{tr} \mathbf{D}=\sum_{k=1}^{p} z_{k}$ and $\left(z_{k}\right)$ is a martingale difference with respect to $\left(\mathcal{F}_{k}\right), k=p, p-1, \ldots, 0$. Moreover, we have the following formula for z_{k}

$$
z_{k}=\left\{\mathbb{E}\left(a_{k} \mid \mathcal{F}_{k-1}\right)-\mathbb{E}\left(a_{k} \mid \mathcal{F}_{k}\right)\right\}-\mathbb{E}\left(b_{k} \mid \mathcal{F}_{k-1}\right),
$$

with

$$
\begin{equation*}
a_{k}=\frac{\varepsilon_{k}^{*}\left(1+\alpha_{k}^{T} \mathbf{D}_{k}^{2} \alpha_{k}\right)}{\beta_{k}^{*} \boldsymbol{\beta}_{k}}, \quad b_{k}=\frac{\alpha_{k}^{T} \mathbf{D}_{k}^{2} \alpha_{k}-\frac{1}{n} \operatorname{tr}\left[\left(\mathbf{I}+z \mathbf{D}_{k}\right) \mathbf{D}_{k}\right]}{\beta_{k}^{*}} \tag{3.4}
\end{equation*}
$$

Proof. Since $\mathbb{E}\left(\operatorname{tr} \mathbf{D}_{k} \mid \mathcal{F}_{k-1}\right)=\mathbb{E}\left(\operatorname{tr} \mathbf{D}_{k} \mid \mathcal{F}_{k}\right)$, we have

$$
z_{k}=\mathbb{E}\left[\left(\operatorname{tr} \mathbf{D}-\operatorname{tr} \mathbf{D}_{k}\right) \mid \mathcal{F}_{k-1}\right]-\mathbb{E}\left[\left(\operatorname{tr} \mathbf{D}-\operatorname{tr} \mathbf{D}_{k}\right) \mid \mathcal{F}_{k}\right]
$$

On the other hand,

$$
\begin{aligned}
\operatorname{tr} \mathbf{D}-\operatorname{tr} \mathbf{D}_{k} & =-\frac{1+\frac{1}{n} \alpha_{k}^{T} \mathbf{D}_{k}^{2} \alpha_{k}}{\beta_{k}} \\
& =-\frac{1+\frac{1}{n} \operatorname{tr}\left[\left(\mathbf{I}+z \mathbf{D}_{k}\right) \mathbf{D}_{k}\right]}{\beta_{k}^{*}}+\frac{\varepsilon_{k}^{*}\left(1+\alpha_{k}^{T} \mathbf{D}_{k}^{2} \alpha_{k}\right)}{\beta_{k}^{*} \beta_{k}}-\frac{\alpha_{k}^{T} \mathbf{D}_{k}^{2} \alpha_{k}-\frac{1}{n} \operatorname{tr}\left[\left(\mathbf{I}+z \mathbf{D}_{k}\right) \mathbf{D}_{k}\right]}{\beta_{k}^{*}} \\
& =-\frac{1+\frac{1}{n} \operatorname{tr}\left[\left(\mathbf{I}+z \mathbf{D}_{k}\right) \mathbf{D}_{k}\right]}{\beta_{k}^{*}}+a_{k}-b_{k} .
\end{aligned}
$$

The conclusion follows from

$$
\mathbb{E}\left(\left.\frac{1+\frac{1}{n} \operatorname{tr}\left[\left(\mathbf{I}+z \mathbf{D}_{k}\right) \mathbf{D}_{k}\right]}{\beta_{k}^{*}} \right\rvert\, \mathcal{F}_{k-1}\right)=\mathbb{E}\left(\left.\frac{1+\frac{1}{n} \operatorname{tr}\left[\left(\mathbf{I}+z \mathbf{D}_{k}\right) \mathbf{D}_{k}\right]}{\beta_{k}^{*}} \right\rvert\, \mathcal{F}_{k}\right)
$$

and

$$
\mathbb{E}\left(\alpha_{k}^{T} \mathbf{D}_{k}^{2} \alpha_{k} \mid \mathcal{F}^{(k)}\right)=\frac{1}{n} \operatorname{tr}\left[\left(\mathbf{I}+z \mathbf{D}_{k}\right) \mathbf{D}_{k}\right] .
$$

Lemma 3.5 For each $\ell>1 / 2$ with $\nu_{4 \ell}<\infty$, there exist positive constants c_{ℓ} and L_{0} independent of n and v, such that for all n, v satisfying $L_{0} n^{-1 / 2} \leq v<1$,

$$
\mathbb{E}\left|m_{p}(z)-E m_{p}(z)\right|^{2 \ell} \leq c_{\ell} n^{-2 \ell} v^{-4 \ell}\left(\Delta+v_{y}\right)^{\ell}
$$

Proof. In the proof of this lemma, c_{ℓ} and $c_{\ell, 0}$ will be used to denote universal positive constants which may depend on the moments up to order ℓ of underlying variables and may represent different values at different appearance, even in one expression. Recall that we have

$$
m_{p}(z)-\mathbb{E} m_{p}(z)=\frac{1}{p}[\operatorname{tr} \mathbf{D}-\mathbb{E} t r \mathbf{D}]=\sum_{k=1}^{p} z_{k},
$$

where the $\left(z_{k}\right)$ are defined in Lemma 3.4. We have

$$
\begin{aligned}
\mathbb{E}\left(\left|z_{k}\right|^{2 \ell} \mid \mathcal{F}_{k}\right) & =\mathbb{E}\left\{\left|\left[\mathbb{E}\left(a_{k} \mid \mathcal{F}_{k-1}\right)-\mathbb{E}\left(a_{k} \mid \mathcal{F}_{k}\right)\right]-\mathbb{E}\left(b_{k} \mid \mathcal{F}_{k-1}\right)\right|^{2 \ell} \mid \mathcal{F}_{k}\right\} \\
& \leq 2^{2 \ell-1} \mathbb{E}\left\{\left[\mathbb{E}\left(a_{k} \mid \mathcal{F}_{k-1}\right)-\mathbb{E}\left(a_{k} \mid \mathcal{F}_{k}\right)\right]^{2 \ell}+\left[\mathbb{E}\left(b_{k} \mid \mathcal{F}_{k-1}\right)\right]^{2 \ell} \mid \mathcal{F}_{k}\right\} \\
& \leq 2^{2 \ell-1} \mathbb{E}\left\{\left[\mathbb{E}\left(a_{k} \mid \mathcal{F}_{k-1}\right)\right]^{2 \ell}+\left[\mathbb{E}\left(b_{k} \mid \mathcal{F}_{k-1}\right)\right]^{2 \ell} \mid \mathcal{F}_{k}\right\} \\
& \leq 2^{2 \ell-1}\left\{\mathbb{E}\left(\left(a_{k}\right)^{2 \ell} \mid \mathcal{F}_{k}\right)+\mathbb{E}\left(\left(b_{k}\right)^{2 \ell} \mid \mathcal{F}_{k}\right)\right\} .
\end{aligned}
$$

Note that by (2.9) and (2.10), $\left|a_{k}\right| \leq v^{-1}\left|\varepsilon_{k}^{*} / \beta_{k}^{*}\right|$. Hence by Lemma 3.1

$$
\mathbb{E}\left(\left|a_{k}\right|^{2 \ell} \mid \mathcal{F}^{(k)}\right) \leq \frac{1}{v^{2 \ell}} \mathbb{E}\left(\left.\left|\frac{\varepsilon_{k}^{*}}{\beta_{k}^{*}}\right|^{2 \ell} \right\rvert\, \mathcal{F}^{(k)}\right) \leq c_{\ell, 0} n^{-\ell} v^{-3 \ell}\left|\beta_{k}^{*}\right|^{-\ell} .
$$

On the other hand, by Lemma 2.1 and assuming $\ell \geq 1$,

$$
\mathbb{E}\left(\left|b_{k}\right|^{2 \ell} \mid \mathcal{F}^{(k)}\right) \leq c_{\ell, 0}\left(n \beta_{k}^{\star}\right)^{-2 \ell}\left(\nu_{4 \ell}+M^{\ell}\right)\left[\operatorname{tr}\left(\mathbf{I}+z \mathbf{D}_{k}\right)\left(\mathbf{I}+\bar{z} \overline{\mathbf{D}}_{k}\right) \mathbf{D}_{k} \overline{\mathbf{D}}_{k}\right]^{\ell} .
$$

Since from (2.8) and (2.12), it holds that

$$
\left|\beta_{k}^{*}\right|^{-1} \operatorname{tr}\left(\mathbf{I}+z \mathbf{D}_{k}\right)\left(\mathbf{I}+\bar{z} \overline{\mathbf{D}}_{k}\right) \mathbf{D}_{k} \overline{\mathbf{D}}_{k} \leq\left|\beta_{k}^{*}\right|^{-1} \operatorname{tr} \mathbf{\Lambda}_{k}^{2} \leq n T v^{-3}
$$

we obtain

$$
\mathbb{E}\left\{\left|b_{k}\right|^{2 \ell} \mid \mathcal{F}_{k}\right\} \leq c_{\ell, 0} n^{-\ell} v^{-3 \ell} \mathbb{E}\left[\left|\beta_{k}^{*}\right|^{-\ell} \mid \mathcal{F}_{k}\right]
$$

Therefore for all $\ell \geq 1$,

$$
\begin{align*}
\mathbb{E}\left(\left|z_{k}\right|^{2 \ell} \mid \mathcal{F}_{k}\right) & \leq c_{\ell, 0} n^{-\ell} v^{-3 \ell} \mathbb{E}\left[\left|\beta_{k}^{*}\right|^{-\ell} \mid \mathcal{F}_{k}\right] \\
& \leq c_{\ell, 0} n^{-\ell} v^{-4 \ell+1} \mathbb{E}\left[\left|\beta_{k}^{*}\right|^{-1} \mid \mathcal{F}_{k}\right] \tag{3.5}
\end{align*}
$$

Applying Lemma 3.3 gives for $\ell \geq 1$

$$
\begin{equation*}
\sum_{k=1}^{n} \mathbb{E}\left|z_{k}\right|^{2 \ell} \leq c_{\ell, 0} n^{-\ell+1}\left(\Delta+v_{y}\right) v^{-4 \ell} \tag{3.6}
\end{equation*}
$$

Case $\ell=1: \quad$ Since that $\left\{z_{k}\right\}$ is a martingale difference sequence, the above inequality yields

$$
\begin{equation*}
\mathbb{E}\left|m_{p}(z)-\mathbb{E} m_{p}(z)\right|^{2}=n^{-2} \sum_{k=1}^{p} \mathbb{E}\left|z_{k}\right|^{2} \leq c_{1,0} n^{-2}\left(\Delta+v_{y}\right) v^{-4} \tag{3.7}
\end{equation*}
$$

The lemma is proved in this case.
Case $\frac{1}{2}<\ell<1: \quad$ By applying the Burkholder inequality for martingales (see Burkholder (1973)) and using the the concavity of the function x^{ℓ}, we find

$$
\begin{aligned}
& \mathbb{E}\left|m_{p}(z)-\mathbb{E} m_{p}(z)\right|^{2 \ell} \\
& \leq c_{\ell} p^{-2 \ell} \mathbb{E}\left(\sum_{k=1}^{p}\left|z_{k}\right|^{2}\right)^{\ell} \leq c_{\ell} n^{-2 \ell}\left[\mathbb{E}\left(\sum_{k=1}^{p}\left|z_{k}\right|^{2}\right)\right]^{\ell} \leq c_{\ell} n^{-2 \ell}\left[\left(\Delta+v_{y}\right) v^{-4}\right]^{\ell}
\end{aligned}
$$

where the last step follows from the previous case $\ell=1$. The lemma is then proved in this case.
Case $\ell>1$:
We proceed by induction in this general case. First, by another Burkholder inequality for martingales, we have

$$
\begin{align*}
\mathbb{E}\left|m_{p}(z)-\mathbb{E} m_{p}(z)\right|^{2 \ell} & \leq c_{\ell} p^{-2 \ell}\left\{\sum_{k=1}^{p} \mathbb{E}\left|z_{k}\right|^{2 \ell}+\mathbb{E}\left(\sum_{k=1}^{p} \mathbb{E}\left(\left|z_{k}\right|^{2} \mid \mathcal{F}_{k}\right)\right)^{\ell}\right\} \\
& \hat{=} I_{1}+I_{2} \tag{3.8}
\end{align*}
$$

By (3.6)

$$
\begin{equation*}
I_{1} \leq c_{\ell, 0}\left(\Delta+v_{y}\right) n^{-3 \ell+1} v^{-4 \ell} \tag{3.9}
\end{equation*}
$$

The lemma has been already proved for $\frac{1}{2}<\ell \leq 1$. Suppose that the lemma is true for $\ell \leq 2^{t}$. Now, we consider the case where $2^{t}<\ell \leq 2^{t+1}$. Application of (3.5) with $\ell=1$ gives

$$
\sum_{k=1}^{n} \mathbb{E}\left(\left|z_{k}\right|^{2} \mid \mathcal{F}_{k}\right) \leq c_{1,0} n^{-1} v^{-3} \sum_{k=1}^{p} \mathbb{E}\left(\left|\beta_{k}^{*}\right|^{-1} \mid \mathcal{F}_{k}\right)
$$

Hence,

$$
\begin{equation*}
I_{2} \leq c_{\ell, 0}(n v)^{-3 \ell} \mathbb{E}\left(\sum_{k=1}^{p} \mathbb{E}\left(\left|\beta_{k}^{*}\right|^{-1} \mid \mathcal{F}_{k}\right)\right)^{\ell} \leq c_{\ell, 0} n^{-2 \ell-1} v^{-3 \ell} \sum_{k=1}^{p} \mathbb{E}\left|\beta_{k}^{*}\right|^{-\ell} \tag{3.10}
\end{equation*}
$$

Notice that if $L_{0}>\sqrt{2}$ then $n v^{2}>2$ and that

$$
\left||\beta|^{-1}-\left|\beta_{k}^{*}\right|^{-1}\right| \leq\left|\beta^{-1}-\left(\beta_{k}^{*}\right)^{-1}\right|=\frac{\left|\operatorname{tr} \mathbf{D}-\operatorname{tr} \mathbf{D}_{k}\right|}{p|\beta|\left|\beta_{k}^{*}\right|} \leq \frac{1}{p v^{2}} \min \left(|\beta|^{-1},\left|\beta_{k}^{*}\right|^{-1}\right)
$$

(this comes from (2.5) and $\left|\beta \beta_{k}^{*}\right|^{-1} \leq v^{-1} \min \left(|\beta|^{-1},\left|\beta_{k}^{*}\right|^{-1}\right)$). This yields

$$
\left|\beta_{k}^{*}\right|^{-1} \leq|\beta|^{-1}+p^{-1} v^{-2}\left|\beta_{k}^{*}\right|^{-1} \leq 2|\beta|^{-1}
$$

and

$$
\begin{aligned}
\left|p \beta^{-1}\right| & \leq\left|\sum_{k=1}^{p}\left(\beta_{k}^{\star}\right)^{-1}\right|+\sum_{k=1}^{p}\left|\left(\beta_{k}^{*}\right)^{-1}-\beta^{-1}\right| \leq\left|\sum_{k=1}^{p}\left(\beta_{k}^{\star}\right)^{-1}\right|+v^{-2}|\beta|^{-1} \\
& \leq 2\left|\sum_{k=1}^{p}\left(\beta_{k}^{\star}\right)^{-1}\right| \leq 2\left|\sum_{k=1}^{p}\left(\left(\beta_{k}^{\star}\right)^{-1}-\beta_{k}^{-1}\right)\right|+2\left|\sum_{k=1}^{p} \beta_{k}^{-1}\right| \\
& \leq 2 \sum_{k=1}^{p} \frac{\left|\varepsilon_{k}^{\star}\right|^{2}}{\left|\beta_{k}\right|\left|\beta_{k}^{*}\right|^{2}}+2 p\left|m_{p}(z)\right| .
\end{aligned}
$$

Therefore, by applying Lemma 3.1 and if we choose $L_{0}>\left(2 c_{\ell, 0}\right)^{1 / \ell}$ so that $c_{\ell, 0} n^{-\ell} v^{-2 \ell}<1 / 2$, we have

$$
\begin{aligned}
\sum_{k=1}^{p} \mathbb{E}\left|\beta_{k}^{*}\right|^{-\ell} & \leq c_{\ell, 0}\left(v^{-\ell} \sum_{k=1}^{p} \mathbb{E} \frac{\left|\varepsilon_{k}^{*}\right|^{2 \ell}}{\left|\beta_{k}^{\star}\right|^{2 \ell}}+p \mathbb{E}\left|m_{p}(z)\right|^{\ell}\right) \\
& \leq c_{\ell, 0}\left(n^{-\ell} v^{-2 \ell} \sum_{k=1}^{p} \mathbb{E}\left|\beta_{k}^{\star}\right|^{-\ell}+p \mathbb{E}\left|m_{p}(z)\right|^{\ell}\right) \\
& \leq 2 c_{\ell, 0} p \mathbb{E}\left|m_{p}(z)\right|^{\ell} .
\end{aligned}
$$

From the above inequality and (3.10), we get

$$
\begin{align*}
I_{2} & \leq c_{\ell} n^{-2 \ell} v^{-3 \ell} \mathbb{E}\left|m_{p}(z)\right|^{\ell} \\
& \leq c_{\ell} n^{-2 \ell} v^{-3 \ell}\left[\mathbb{E}\left|m_{p}(z)-\mathbb{E} m_{p}(z)\right|^{\ell}+\left|\mathbb{E} m_{p}(z)-m(z)\right|^{\ell}+|m(z)|^{\ell}\right] \\
& \leq c_{\ell} n^{-2 \ell} v^{-3 \ell}\left[\mathbb{E}\left|m_{p}(z)-\mathbb{E} m_{p}(z)\right|^{\ell}+\left(\Delta+v_{y}\right)^{\ell} v^{-\ell}\right] . \tag{3.11}
\end{align*}
$$

It can be readily checked that the ratio of the upper bound for I_{1}, Eq. (3.9), over the second term from the last inequality is bounded by a constant (for both cases $0<y<1$ and $y=1$), namely

$$
\frac{\left(\Delta+v_{y}\right) n^{-3 \ell+1} v^{-4 \ell}}{n^{-2 \ell} v^{-3 \ell}\left(\Delta+v_{y}\right)^{\ell} v^{-\ell}}=\left[\frac{1}{n\left(\Delta+v_{y}\right)}\right]^{\ell-1} \leq 1
$$

because $n v^{2} \geq 1$ and $v \leq 1$. Therefore by (3.8) and (3.11), it follows that

$$
\begin{align*}
& \mathbb{E}\left|m_{p}(z)-\mathbb{E} m_{p}(z)\right|^{2 \ell} \\
& \leq c_{\ell} n^{-2 \ell} v^{-3 \ell} \mathbb{E}\left|m_{p}(z)-\mathbb{E} m_{p}(z)\right|^{\ell}+c_{\ell} n^{-2 \ell}\left(\Delta+v_{y}\right)^{\ell} v^{-4 \ell} . \tag{3.12}
\end{align*}
$$

Finally by the induction hypothesis, we find

$$
\begin{aligned}
& \mathbb{E}\left|m_{p}(z)-\mathbb{E} m_{p}(z)\right|^{2 \ell} \\
& \leq c_{\ell} n^{-2 \ell} v^{-3 \ell}\left[n^{-\ell} v^{-2 \ell}\left(\Delta+v_{y}\right)^{\ell / 2}\right]+c_{\ell} n^{-2 \ell}\left(\Delta+v_{y}\right)^{\ell} v^{-4 \ell} \\
& =\left[\left(\frac{1}{n^{2} v^{2}\left(\Delta+v_{y}\right)}\right)^{\ell / 2}+1\right] c_{\ell} n^{-2 \ell}\left(\Delta+v_{y}\right)^{\ell} v^{-4 \ell} \\
& \leq 2 c_{\ell} n^{-2 \ell}\left(\Delta+v_{y}\right)^{\ell} v^{-4 \ell} .
\end{aligned}
$$

The proof of Lemma 3.5 is complete.
Remark 3.1. Application of Lemma 3.5 to the case $\ell=1$ gives that there is some constant $c_{1}>0$ such that

$$
\begin{equation*}
\mathbb{E}|t r \mathbf{D}-\mathbb{E} t r \mathbf{D}|^{2} \leq c_{1}\left(\Delta+v_{y}\right) v^{-4} . \tag{3.13}
\end{equation*}
$$

It is also worth noticing that if we substitute \mathbf{D} for any \mathbf{D}_{k} with $k \leq n$, Lemma 3.5 as well as the above consequence (3.13) are still valid, with slightly different constants c_{ℓ} 's.

4 Proofs

Suppose that G is a function of bounded variation. The Stieltjes transform g of G is defined as

$$
g(z)=\int_{-\infty}^{\infty} \frac{1}{x-z} d G(x)
$$

where $z=u+i v$ and $v>0$. Our main tool is the following proposition (Bai (1993a)).
Proposition 4.1 Let G be a distribution function and H be a function of bounded variation satisfying $\int|G(x)-H(x)| d x<\infty$. Denote their Stieltjes transforms by $g(z)$ and $h(z)$, respectively. Then

$$
\begin{aligned}
\|G-H\| \leq & \frac{1}{\pi(1-\kappa)(2 \gamma-1)}\left[\int_{-A}^{A}|g(z)-h(z)| d u+\frac{2 \pi}{v} \int_{|x|>B}|G(x)-H(x)| d x\right. \\
& \left.+\frac{1}{v} \sup _{x} \int_{|y| \leq 2 v a}|H(x+y)-H(x)| d y\right]
\end{aligned}
$$

where the constants $A>B, \gamma$ and a are restricted by

$$
\gamma=\frac{1}{\pi} \int_{|u| \leq a} \frac{1}{u^{2}+1} d u>\frac{1}{2}, \text { and } \kappa=\frac{4 B}{\pi(A-B)(2 \gamma-1)} \in(0,1) .
$$

Denote the Stieltjes transform of F_{p} and F_{y} by $m_{p}(z)$ and $m(z)$, respectively. By Proposition 4.1 with $A=25, B=5$ and Lemma 2.5, we have, for some constant $c>0$,

$$
\begin{equation*}
\left\|\mathbb{E} F_{p}-F\right\| \leq c\left[\int_{-A}^{A}\left|\mathbb{E} m_{p}(z)-m(z)\right| d u+\frac{1}{v} \int_{|x|>5}\left|\mathbb{E} F_{p}(x)-\epsilon(x)\right| d x+v_{y}\right] \tag{4.1}
\end{equation*}
$$

where $\epsilon(x)=1$ for $x>0$ and $\epsilon(x)=0$ otherwise.
In the sequel, for brevity, c will be an universal constant which is not related to the estimation of the order. Since it is already proved in Bai (1993a) that $\Delta=\left\|\mathbb{E} F_{p}-F_{y}\right\|=O\left(n^{-1 / 4}\right), \Delta$ will be treated as of order $n^{-1 / 4}$.

4.1 Proof of Theorem 1.1

We will estimate the first two terms on the right hand side of (4.1) with various choices of v, subject to $v \simeq n^{-1 / 2}$. We begin with the the second term. Let λ_{p} be the largest eigenvalue of \mathbf{S}_{p} and recall that $b=(1+\sqrt{y})^{2}$. Yin, Bai and Krishnaiah [1988] proved that under the conditions C.1-2-3, one can find two sequences $\left(\eta_{p}\right)$ and $\left(m_{p}\right)$ satisfying $\eta_{p} \rightarrow 0$ and $m_{p}^{-1} \log n \rightarrow 0$ such that

$$
\begin{equation*}
\mathbb{E}\left(\lambda_{p}\right)^{m} \leq\left(b+\eta_{p}\right)^{m_{p}} \tag{4.2}
\end{equation*}
$$

Notice that

$$
\begin{equation*}
1-F_{p}(x) \leq I_{\left\{\lambda_{p} \geq x\right\}}, \text { for } x \geq 0 \tag{4.3}
\end{equation*}
$$

Take $B=5$, we get for all $t>0$

$$
\begin{aligned}
& \int_{B}^{\infty} \mathbb{E}\left|F_{p}(x)-F_{y}(x)\right| d x \\
& \quad \leq \int_{B}^{\infty} P\left(\lambda_{p} \geq x\right) d x \leq \int_{B}^{\infty}\left(\frac{b+\eta_{p}}{B}\right)^{m_{p}} d x=o\left(n^{-t}\right)
\end{aligned}
$$

Thus the second term of the equation (3.1) can be neglected. Therefore what remains is to estimate the order of the first term of (4.1).

By Eq. (3.14) of Bai [1993b],

$$
m_{p}(z)=\int_{0}^{\infty} \frac{1}{x-z} d F_{p}(x)=\frac{1}{p} \operatorname{tr} \mathbf{D}=-\frac{1}{p} \sum_{k=1}^{p} \frac{1}{\beta_{k}}
$$

Let us define δ_{p} such that

$$
m_{p}(z)=-\frac{1}{z+y-1+y z \mathbb{E} m_{p}(z)}+\delta_{p}=-\frac{1}{\mathbb{E} \beta}+\delta_{p}
$$

Since

$$
\frac{1}{\beta_{k}}=\frac{1}{\mathbb{E} \beta}\left(1-\frac{\varepsilon_{k}}{\beta_{k}}\right)
$$

it is easy to see that

$$
\delta_{p}=\frac{1}{p} \sum_{k=1}^{p} \frac{1}{\mathbb{E} \beta} \frac{\varepsilon_{k}}{\beta_{k}}=\frac{1}{(\mathbb{E} \beta)^{2}}\left(\frac{1}{p} \sum_{k=1}^{p} \varepsilon_{k}-\frac{1}{p} \sum_{k=1}^{p} \frac{\varepsilon_{k}^{2}}{\beta_{k}}\right)
$$

Now
$\left|\mathbb{E} \delta_{p}\right|$

$$
\begin{aligned}
\leq & \frac{1}{p|\mathbb{E} \beta|^{2}} \sum_{k=1}^{p}\left(\left|\mathbb{E} \varepsilon_{k}\right|+\left|\mathbb{E} \frac{\varepsilon_{k}^{2}}{\beta_{k}}\right|\right) \\
= & \frac{1}{p|\mathbb{E} \beta|^{2}} \sum_{k=1}^{p}\left[\left|\mathbb{E}\left(\varepsilon_{k}^{*}+\tilde{\varepsilon}_{k}\right)+\pi_{k}\right|+\left|\frac{1}{\mathbb{E} \beta} \mathbb{E} \varepsilon_{k}^{2}-\frac{1}{(\mathbb{E} \beta)^{2}} \mathbb{E} \varepsilon_{k}^{3}+\frac{1}{(\mathbb{E} \beta)^{2}} \mathbb{E}\left(\frac{\varepsilon_{k}^{4}}{\beta_{k}}\right)\right|\right] \\
\leq & \frac{1}{p|\mathbb{E} \beta|^{2}}\left[\sum_{k=1}^{p}\left|\mathbb{E}\left(\varepsilon_{k}^{*}+\tilde{\varepsilon}_{k}\right)+\pi_{k}\right|+\sum_{k=1}^{p}\left|\frac{1}{\mathbb{E} \beta} \mathbb{E} \varepsilon_{k}^{2}\right|+\sum_{k=1}^{p}\left|\frac{1}{(\mathbb{E} \beta)^{2}} \mathbb{E} \varepsilon_{k}^{3}\right|\right. \\
& \left.+\sum_{k=1}^{p}\left|\frac{1}{(\mathbb{E} \beta)^{2}} \mathbb{E}\left(\frac{\varepsilon_{k}^{4}}{\beta_{k}}\right)\right|\right] \\
= & |\mathbb{E} \beta|^{-2}\left[I_{0}+I_{1}+I_{2}+I_{3}\right] .
\end{aligned}
$$

We will estimate each of I_{i} 's to obtain a bound on $\left|\mathbb{E} \delta_{p}\right|(c f .(4.4))$. Since that $\mathbb{E}\left(\varepsilon_{k}^{*}+\tilde{\varepsilon}_{k}\right)=0$, by (2.5), we have

$$
I_{0}=\frac{1}{p} \sum_{k=1}^{p}\left|\pi_{k}\right|=\frac{1}{p n} \sum_{k=1}^{p}\left|\mathbb{E} t r \mathbf{D}_{k}-\mathbb{E} \operatorname{tr} \mathbf{D}\right| \leq 1 /(n v) \leq C_{v} v
$$

Here and hereafter, the symbol C_{v} denotes a positive constant which may be made arbitrarily small by choosing $\sqrt{n} v$ large. From Lemma 3.2, Remark 3.1 and noticing that $v \leq v_{y}$, we have

$$
\begin{aligned}
I_{1} & \leq \frac{1}{p|\mathbb{E} \beta|} \sum_{k=1}^{p} \mathbb{E}\left|\varepsilon_{k}\right|^{2}=\frac{1}{p|\mathbb{E} \beta|} \sum_{k=1}^{p}\left(\mathbb{E}\left|\varepsilon_{k}^{*}\right|^{2}+\mathbb{E}\left|\tilde{\varepsilon}_{k}\right|^{2}+\left|\pi_{k}\right|^{2}\right) \\
& \leq \frac{c}{|\mathbb{E} \beta|}\left(\left[\frac{1}{n}+\frac{\Delta+v_{y}}{n v^{2}}\right]+\frac{\Delta+v_{y}}{n^{2} v^{4}}+\frac{1}{n^{2} v^{2}}\right) \leq \frac{c\left(\Delta+v_{y}\right)}{|\mathbb{E} \beta| n v^{2}} \leq \frac{C_{v}\left(\Delta+v_{y}\right)}{|\mathbb{E} \beta|} \\
I_{2} & =\frac{1}{p|\mathbb{E} \beta|^{2}} \sum_{k=1}^{p}\left|\mathbb{E} \varepsilon_{k}^{3}\right| \leq \frac{1}{p|\mathbb{E} \beta|^{2}} \sum_{k=1}^{p}\left(\mathbb{E}\left|\varepsilon_{k}\right|^{2}+\mathbb{E}\left|\varepsilon_{k}\right|^{4}\right)
\end{aligned}
$$

Now

$$
\frac{1}{p} \sum_{k=1}^{p} \mathbb{E}\left|\varepsilon_{k}\right|^{4} \leq \frac{27}{p} \sum_{k=1}^{p}\left(\mathbb{E}\left|\varepsilon_{k}^{*}\right|^{4}+\mathbb{E}\left|\tilde{\varepsilon}_{k}\right|^{4}+\left|\pi_{k}\right|^{4}\right) \triangleq c\left(I_{21}+I_{22}+I_{23}\right)
$$

Since

$$
\operatorname{tr} \mathbf{B}_{k} \overline{\mathbf{B}}_{k}=\operatorname{tr}\left(\mathbf{I}_{p-1}+z \mathbf{D}_{k}\right)\left(I+\bar{z} \overline{\mathbf{D}}_{k}\right) \leq 2\left(p+|z|^{2} \operatorname{tr} \mathbf{D}_{k} \overline{\mathbf{D}}_{k}\right)
$$

We have from the proof of Lemma 3.1,

$$
\begin{aligned}
\mathbb{E}\left|\varepsilon_{k}^{*}\right|^{4} & \leq c n^{-2}\left\{1+n^{-2} \mathbb{E}\left(\operatorname{tr} \mathbf{B}_{k} \overline{\mathbf{B}}_{k}\right)^{2}\right\} \\
& \leq c n^{-2}\left\{1+n^{-2} \mathbb{E}\left(\operatorname{tr} \mathbf{D}_{k} \overline{\mathbf{D}}_{k}\right)^{2}\right\}
\end{aligned}
$$

Now

$$
\begin{aligned}
\mathbb{E}\left(\operatorname{tr}\left(\mathbf{D}_{k} \overline{\mathbf{D}_{k}}\right)\right)^{2} & =v^{-2} \mathbb{E}\left(\operatorname{Im}\left(\operatorname{tr}\left(\mathbf{D}_{k}\right)\right)\right)^{2} \\
& \leq 2 v^{-2}\left[v^{-2}+\mathbb{E}(\operatorname{Im}(\operatorname{tr}(\mathbf{D})))^{2}\right] \\
& =2 v^{-4}+2 p^{2} v^{-2} \mathbb{E}\left(\operatorname{Im}\left(m_{p}(z)\right)\right)^{2} \\
& \leq 2 v^{-4}+4 p^{2} v^{-2}\left|\mathbb{E} m_{p}(z)\right|^{2}+4 p^{2} v^{-2} \mathbb{E}\left|m_{p}(z)-\mathbb{E} m_{p}(z)\right|^{2} \\
& \leq c p^{2} v^{-4}\left(\Delta+v_{y}\right)^{2}+c v^{-6}\left(\Delta+v_{y}\right)
\end{aligned}
$$

where the second inequality follows from (2.5) and the last step follows from Lemma 3.5 and $\left|\mathbb{E} m_{p}(z)\right| \leq$ $\left|\mathbb{E} m_{p}(z)-m(z)\right|+|m(z)| \leq v^{-1}\left(2 \Delta+\alpha_{y} v_{y}\right)$ with $\alpha_{y}:=(1+3 \sqrt{y}) /[\sqrt{y}(1-y)]$ for $0<y<1$ and $\alpha_{y}:=2$ for $y=1$. Thus

$$
\begin{aligned}
I_{21} & \leq c\left\{n^{-2}+n^{-4} v^{-4}+n^{-2} v^{-4}\left(\Delta+v_{y}\right)^{2}+n^{-4} v^{-6}\left(\Delta+v_{y}\right)\right\} \\
& \leq C_{v}\left[v_{y}^{2}+\Delta^{2}\right]
\end{aligned}
$$

Also, considering \mathbf{D}_{k} instead of \mathbf{D} as in Lemma 3.5 and applying (2.4), one can show that for some L_{0} such that for all $L_{0} n^{-1 / 2} \leq v<1$,

$$
I_{22} \leq c\left(\Delta+v_{y}\right)^{2} n^{-4} v^{-8} \leq C_{v}\left[v_{y}^{2}+\Delta^{2}\right]
$$

Since $\left|\pi_{k}\right| \leq|z|(n v)^{-1}$, we have $I_{23} \leq|z|^{4}(n v)^{-4}$, and hence,

$$
\begin{aligned}
p^{-1} \sum_{k=1}^{p} \mathbb{E}\left|\varepsilon_{k}\right|^{4} & \leq c\left(I_{21}+I_{22}+I_{23}\right) \\
& \leq c\left[C_{v}\left(\Delta^{2}+v_{y}^{2}\right)+C_{v}\left(\Delta^{2}+v_{y}^{2}\right)+(n v)^{-4}\right] \\
& \leq C_{v}\left(\Delta^{2}+v_{y}^{2}\right)
\end{aligned}
$$

Consequently, for some constant $C_{v}>0$,

$$
I_{2} \leq \frac{c\left(\Delta+v_{y}\right)}{|\mathbb{E} \beta|^{2} n v^{2}}+\frac{C_{v}}{|\mathbb{E} \beta|^{2}}\left(v_{y}^{2}+\Delta^{2}\right) \leq \frac{C_{v}\left(\Delta+v_{y}\right)}{|\mathbb{E} \beta|^{2}}
$$

and

$$
I_{3} \leq \frac{1}{p v|\mathbb{E} \beta|^{2}} \sum_{k=1}^{p} \mathbb{E}\left|\varepsilon_{k}\right|^{4} \leq \frac{C_{v}}{v|\mathbb{E} \beta|^{2}}\left(\Delta^{2}+v_{y}^{2}\right)
$$

Summing up the above results, we obtain

$$
\begin{align*}
\left|\mathbb{E} \delta_{p}\right| & \leq \frac{1}{|\mathbb{E} \beta|^{2}}\left[I_{0}+I_{1}+I_{2}+I_{3}\right] \\
& \leq \frac{C_{v}}{|\mathbb{E} \beta|^{2}}\left[v+\frac{\Delta+v_{y}}{|\mathbb{E} \beta|}+\frac{\Delta+v_{y}}{|\mathbb{E} \beta|^{2}}+\frac{\Delta^{2}+v_{y}^{2}}{v|\mathbb{E} \beta|^{2}}\right] \tag{4.4}
\end{align*}
$$

On the other hand, by Lemma 2.2 and (4.1), we have

$$
\begin{equation*}
\frac{1}{|\mathbb{E} \beta|}=\left|-\mathbb{E} \delta_{p}+\mathbb{E}\left[m_{p}(z)-m(z)\right]+m(z)\right| \leq\left|\mathbb{E} \delta_{p}\right|+\frac{2 \Delta+\alpha_{y} v_{y}}{v} \tag{4.5}
\end{equation*}
$$

Note that the estimates (4.4) and (4.5) are valid for all $L_{0} n^{-1 / 2} \leq v<1$. As proved in Bai (1993b (see Eq. (3.39)-(3.40) there), there is a constant c such that for every $v>0$

$$
\int_{-A}^{A}\left|\mathbb{E} m_{p}(z)-m(z)\right| d u<c v
$$

provided that $\sup _{u}\left|\mathbb{E} \delta_{n}\right| \leq v$ (here and hereafter, $\sup _{u}$ refers to $\sup _{|u| \leq A}$). Thus, if $\sup _{u}\left|\mathbb{E} \delta_{p}\right| \leq v$, in view of (4.1), we can find a positive constant c_{1} such that

$$
\begin{equation*}
\Delta<c_{1} v_{y} . \tag{4.6}
\end{equation*}
$$

Part (i) of Theorem 1.1 :

In this part, $0<y<1$ and $v_{y}=v$. Write $M_{0}=\left(1+2 c_{1}+\alpha_{y}\right)$ and select $L>L_{0}$ such that when $L n^{-1 / 2} \leq v<1$, we have

$$
C_{v}^{-1}>M_{0}^{2}\left[1+\left(1+c_{1}\right) M_{0}+\left(2+c_{1}+c_{1}^{2}\right) M_{0}^{2}\right] .
$$

The proof will be complete once we have shown that for all large n and $L n^{-1 / 2} \leq v<1$,

$$
\begin{equation*}
\sup _{u}\left|\mathbb{E} \delta_{p}\right| \leq v . \tag{4.7}
\end{equation*}
$$

It is proved in Bai (1993b) that (4.7) holds for all large n and $c_{2} n^{-1 / 4} \leq v<1$, where $c_{2}>0$ is a constant, and hence $\Delta<c_{1} v$. Applying these to (4.5), we have

$$
\begin{equation*}
|\mathbb{E} \beta|^{-1} \leq v+2 \Delta / v+\alpha_{y}<M_{0} \tag{4.8}
\end{equation*}
$$

This means that for all large n and $c_{2} n^{-1 / 4} \leq v<1$, both (4.7) and (4.8) hold. Now letting v decrease to $L n^{-1 / 2}$, since $\sup _{u}\left|\mathbb{E} \delta_{p}\right|$ is continuous in v, one of the following cases must hold:

Case 1. $\sup _{u}\left|\mathbb{E} \delta_{p}\right|<v$ is true for all $L n^{-1 / 2} \leq v<1$;
Case 2. There is a $v \in\left[L n^{-1 / 2}, c_{2} n^{-1 / 4}\right)$ such that $\sup _{u}\left|\mathbb{E} \delta_{p}\right|=v$ and $|\mathbb{E} \beta|^{-1} \leq M_{0}$;
Case 3. There is a $v \in\left[L n^{-1 / 2}, c_{2} n^{-1 / 4}\right)$ such that $\sup _{u}\left|\mathbb{E} \delta_{p}\right|<v$
and $|\mathbb{E} \beta|^{-1}=M_{0}$.
The theorem then follows if Case 1 is true. Thus to complete the proof of the theorem, it suffices to show that Cases 2 and 3 are impossible. Note that in either Cases 2 or 3 , we have $\Delta<c_{1} v$ by (4.6).

If Case 3 happens, then there exist $v_{0} \in\left[\operatorname{Ln}^{-1 / 2}, c_{2} n^{-1 / 4}\right)$ and u_{0}, such that $\left|\mathbb{E} \beta\left(z_{0}\right)\right|^{-1}=M_{0}$, where $z_{0}=u_{0}+i v_{0}$. Then, by (4.5), we have

$$
\left|\mathbb{E} \beta\left(z_{0}\right)\right|^{-1} \leq 2 c_{1}+\alpha_{y}+v_{0}<2 c_{1}+\alpha_{y}+1=M_{0},
$$

which leads to a contradiction to the equality assumption. If Case 2 happens, then there exist $v_{0} \in$ $\left[L n^{-1 / 2}, c_{2} n^{-1 / 4}\right)$ and u_{0}, such that $\left|\mathbb{E} \delta_{p}\left(z_{0}\right)\right|=v_{0}$, where $z_{0}=u_{0}+i v_{0}$. From (4.4) we have

$$
\left|\mathbb{E} \delta_{p}\left(z_{0}\right)\right| \leq v_{0} C_{v} M_{0}^{2}\left[1+c_{1} M_{0}+\left(1+c_{1}^{2}\right) M_{0}^{2}\right]<v_{0} .
$$

This is also a contradiction to the equality assumption. The proof of Theorem 1.1 is complete for the case $0<y<1$.

Part (ii) of Theorem 1.1 :

When $y=1, F_{p}(x)$ and $F_{y}(x)$ satisfy the following conditions:

$$
F_{p}(0)=F_{y}(0), \quad \int_{0}^{\infty} x d F_{p}(x)=\int_{0}^{\infty} x d F_{y}(x)=1
$$

Thus $\tilde{F}_{p}(x)=\int_{0}^{x} t d F_{p}(t)$ and $\tilde{F}_{y}(x)=\int_{0}^{x} t d F_{y}(t)$ are two distributions and $\tilde{F}_{y}(x)$ satisfies the Lipschitz condition, i.e. there exists a constant $L>0$ for any x and y such that

$$
\begin{equation*}
\left|\tilde{F}_{y}\left(x^{\prime}\right)-\tilde{F}_{y}(x)\right| \leq L\left|x^{\prime}-x\right| \tag{4.9}
\end{equation*}
$$

Therefore there is a constant c_{1} such that

$$
\frac{1}{v} \sup _{x} \int_{|u| \leq 2 \tau v}\left|\tilde{F}_{y}(x+u)-\tilde{F}_{y}(x)\right| d u \leq c_{1} v
$$

According to the definition of $\tilde{F}_{p}(x)$ and $\tilde{F}_{y}(x)$ it follows for any $\mu>0$ and every $t>0$ that

$$
\begin{aligned}
\int_{4+\mu}^{\infty}\left|\mathbb{E} \tilde{F}_{p}(x)-\tilde{F}_{y}(x)\right| d x & =o\left(n^{-t}\right) \\
\int_{4+\mu}^{\infty} \mathbb{E}\left|\tilde{F}_{p}(x)-\tilde{F}_{y}(x)\right| d x & =o\left(n^{-t}\right)
\end{aligned}
$$

Let $\tilde{m}_{p}(z)$ and $\tilde{m}(z)$ denote the Stieltjes transform of $\tilde{F}_{p}(x)$ and $\tilde{F}_{y}(x)$ respectively , then

$$
\tilde{m}_{p}(z)=1+z m_{p}(z), \quad \tilde{m}(z)=1+z m(z)
$$

The proof of the Theorem 1.1, part (i) can be applied to the estimations of $\tilde{\Delta}=\left\|\tilde{F}_{p}(x)-\tilde{F}_{y}(x)\right\|$ and $\mathbb{E}\left|\tilde{m}_{p}(z)-\tilde{m}(z)\right|^{k}$. Therefore there is a constant $\tilde{c}>0$, when $1 / 2 \geq v \geq \tilde{c} n^{-1 / 2}$ it is followed that

$$
\begin{align*}
\sup _{u} \mathbb{E}\left|z \delta_{p}\right| & <v, \tag{4.10}\\
\mathbb{E}\left|z m_{p}(z)-z m(z)\right| & =\mathbb{E}\left|\tilde{m}_{p}(z)-\tilde{m}(z)\right|<v . \tag{4.11}
\end{align*}
$$

By (4.1) and Lemma 2.5, there is a constant c_{2}, such that

$$
\begin{aligned}
\Delta & \leq \kappa \int_{|u| \leq 25}\left|\mathbb{E} m_{p}(z)-m(z)\right| d u+c_{2} \sqrt{v} \\
& =\kappa \int_{|u| \leq 25} \frac{\left|\mathbb{E} z m_{p}(z)-z m(z)\right|}{|z|} d u+c_{2} \sqrt{v} \\
& \leq \kappa v \int_{|u| \leq 25} \frac{d u}{\sqrt{u^{2}+v^{2}}}+c_{2} \sqrt{v} \leq \kappa v \log \frac{c_{3}}{v}+c_{2} \sqrt{v}
\end{aligned}
$$

Since $\kappa v \log \frac{c_{3}}{v}<\sqrt{v}$ when v is small enough, it is followed that

$$
\Delta<\left(c_{2}+1\right) \sqrt{v} .
$$

The proof of Theorem 1.1, part (ii) is complete.

4.2 Proof of Theorem 1.2

By Chebyshev inequality, it suffices to show that

$$
\mathbb{E}\left\|F_{p}-F_{y}\right\|= \begin{cases}O\left(n^{-\frac{2}{5}}\right), & \text { for } 0<y<1, \\ O\left(n^{-\frac{2}{9}}\right), & \text { for } y=1\end{cases}
$$

Case $0<y<1$: \quad From (4.1), it follows that

$$
\begin{aligned}
& \mathbb{E}\left|\left|F_{p}-F_{y}\right|\right| \\
& \leq c\left[\int_{-A}^{A} \mathbb{E}\left|m_{p}(z)-m(z)\right| d u+\frac{1}{v} \int_{|x|>B} \mathbb{E}\left|F_{p}(x)-e(x)\right| d x+v\right] \\
& \leq c\left[\int_{-A}^{A} \mathbb{E}\left|m_{p}(z)-\mathbb{E} m_{p}(z)\right| d u+\int_{-A}^{A}\left|\mathbb{E} m_{p}(z)-m(z)\right| d u\right. \\
&\left.+\frac{1}{v} \int_{|x|>B}\left|\mathbb{E} F_{p}(x)-\epsilon(x)\right| d x+v\right] .
\end{aligned}
$$

In the above argument, we have used the fact that $\mathbb{E}\left|F_{p}(x)-\epsilon(x)\right|=\left|\mathbb{E} F_{p}(x)-\epsilon(x)\right|$ for all $|x|>B$.
As in the proof of Theorem 1.1, we have shown that the last three terms on the right hand of the above inequality are of order $O(v)$ for all $L n^{-1 / 2} \leq v<1$. Applying Cauchy-Schwarz inequality and Remark 3.1, and the result $\Delta=O\left(n^{-1 / 2}\right)$ proved in Theorem 1.1, we conclude that

$$
\begin{aligned}
\int_{-A}^{A} \mathbb{E}\left|m_{p}(z)-\mathbb{E} m_{p}(z)\right| d u & \leq \int_{-A}^{A}\left(\mathbb{E}\left|m_{p}(z)-\mathbb{E} m_{p}(z)\right|^{2}\right)^{1 / 2} d u \\
& \leq c n^{-1} v^{-3 / 2} \leq v
\end{aligned}
$$

for some positive constant c and all $c n^{-2 / 5} \leq v<1$. The proof of Theorem 1.2 in this case is complete.

Case $y=1$: \quad Similarly we have for all $L n^{-1 / 2} \leq v<1$,

$$
\mathbb{E}\left\|F_{p}-F_{y}\right\| \leq c\left[\int_{-A}^{A} \mathbb{E}\left|m_{p}(z)-\mathbb{E} m_{p}(z)\right| d u+\sqrt{v}\right] .
$$

Applying Cauchy-Schwarz inequality and Remark 3.1, and the result $\Delta=O\left(n^{-1 / 4}\right)$ proved in Theorem 1.1, we conclude that

$$
\begin{aligned}
\int_{-A}^{A} \mathbb{E}\left|m_{p}(z)-\mathbb{E} m_{p}(z)\right| d u & \leq \int_{-A}^{A}\left(\mathbb{E}\left|m_{p}(z)-\mathbb{E} m_{p}(z)\right|^{2}\right)^{1 / 2} d u \\
& \leq c n^{-1} v^{-2} v^{1 / 4}=c n^{-1} v^{-7 / 4} \leq v^{1 / 2}
\end{aligned}
$$

for some positive constant c and all $c n^{-4 / 9} \leq v<1$. The proof of Theorem 1.2 in this case is complete.

4.3 Proof of Theorem 1.3

By Proposition 4.1 we have

$$
\begin{align*}
\left\|F_{p}-F_{y}\right\| \leq & c\left[\int_{-A}^{A}\left|m_{p}(z)-\mathbb{E} m_{p}(z)\right| d u+\int_{-A}^{A}\left|\mathbb{E} m_{p}(z)-m(z)\right| d u\right. \\
& \left.+\frac{1}{v} \int_{|x| \geq B}\left|F_{p}(x)-e(x)\right| d x+v_{y}\right] \tag{4.12}
\end{align*}
$$

Yin, Bai and Krishnaiah (1988) has proved that under the assumption of Theorem 1.3, with probability one, for all large $n, \mathrm{~S}_{p}$ has no eigenvalues larger than B or less than $-B$ (recall that $B=5$). Thus, with probability one, for all large n,

$$
\int_{|x| \geq B}\left|F_{p}(x)-e(x)\right| d x=0 .
$$

Moreover in the proof of Theorem 1.1, we have proved that the second term on the right hand of (4.12) has order $O\left(v_{y}\right)$ for all $L n^{-1 / 2} \leq v<1$.

Case $0<y<1$: Recall that in this case, $v_{y}=v$. To complete the proof of Theorem 1.3, set $v=\varepsilon n^{-2 / 5+\eta}$ with some $\varepsilon>0$. We will show that

$$
\begin{equation*}
v^{-1} \int_{-A}^{A}\left|m_{p}(z)-\mathbb{E} m_{p}(z)\right| d u \rightarrow 0 \quad \text { a.s. } \tag{4.13}
\end{equation*}
$$

Now, applying Lemma 3.5, we obtain for each $\xi>0$,

$$
\begin{aligned}
& P\left(\int_{-A}^{A}\left|m_{p}(z)-\mathbb{E} m_{p}(z)\right| d u \geq \xi v\right) \\
& \quad \leq(v \xi)^{-2 k}(2 A)^{2 k-1} \int_{-A}^{A} \mathbb{E}\left|m_{p}(z)-\mathbb{E} m_{p}(z)\right|^{2 k} d u \\
& \quad \leq \xi^{-2 k}(2 A)^{2 k}\left[c_{k}\left(n^{-2} v^{-5}\right)^{k}\right] \\
& \leq c_{k}^{\prime}(\varepsilon \xi)^{-2 k} n^{-5 \eta k} .
\end{aligned}
$$

The right hand side of the above inequality is summable by choosing k such that $5 \eta k>1$. Thus, (4.13) is proved and the proof of Theorem 1.3 is complete in this case.

Case $y=1$: \quad The proof in this case is similar with $v_{y}=\sqrt{v}$. By taking $v=\varepsilon n^{-4 / 9+\eta}$ with some $\varepsilon>0$, we have

$$
\begin{equation*}
v^{-1 / 2} \int_{-A}^{A}\left|m_{p}(z)-\mathbb{E} m_{p}(z)\right| d u \rightarrow 0 \quad \text { a.s. } \tag{4.14}
\end{equation*}
$$

Acknowledgments. J. F. Yao thanks the National University of Singapore for the support during his visit to its Department of Statistics and Applied Probability.

References

[1] Bai, Z.D. and Yin, Y. Q. (1986) . Limiting behavior of the norm of products of random matrices and two problems of Geman-Hwang. Probab. Th. Rel. Field, 73, 555-569.
[2] Bai, Z. D., Yin, Y. Q. and Krishnaiah, P.K. (1987). On the limiting empirical distribution function of the eigenvalues of a multivariate F-matrix. The Probability Theory and Its Applications, 32 , 490-500.
[3] Bai, Z. D. (1993a). Convergence rate of expected spectral distributions of large random matrices, Part I. Wigner matrices. Ann. Probab. 21, 625-648.
[4] Bai, Z. D. (1993b). Convergence rate of expected spectral distributions of large random matrices, Part II. Sample covariance matrices. Ann. Probab. 21, 6649-672.
[5] Bai, Z. D. (1998). Methodologies in spectral analysis of large dimensional random matrices. A review. Statistica Sinica 9, 611-677
[6] Bai, Z. D., Miao, Baiqi and Tsay, Jhishen. (1997a). A note on the convergence rate of the spectral distribution of large random matrices, Stat. \& Probab. Let. 34,95-101.
[7] Bai, Z. D., Miao, Baiqi and Tsay, Jhishen. (1997b). Convergence rate of the spectral distribution of large Wigner matrices, (in preparation).
[8] Bai, Z. D., Miao, Baiqi and Tsay, Jhishen. (1998). Remarks on the convergence rate of the spectral distribution of Wigner matrices, Ann. Appl. Probab. (to appear)
[9] Bai, Z. D. and Silverstein, J. W. (1998). No eigenvalues outside the support of the limiting spectral distribution of large dimensional sample covariance matrices Ann. Probab.,26, No.1, 316-345.
[10] Marčenko, V. A. and Pastur, L. A. (1967). Distribution of eigenvalues for some sets of random matrices. Mat. Sb., 72, 507-536.
[11] Wigner, E. P. (1955). Characteristic vectors bordered matrices with infinite dimensions. Ann. of Math., 62, 548-564.
[12] Wigner, E. P. (1958). On the distributions of the roots of certain symmetric matrices. Ann. Math., 67, 325-327.
[13] Yin, Y. Q., Bai, Z.D. and Krishnaiah, P. R. (1988). On the limit of the largest eigenvalue of the large dimensional sample covariance matrix. Probab. Theory and Related Fields, 78, 509-531.

[^0]: *Supported in part by the NUS...TO BE CLARIFIED
 ${ }^{\dagger}$ Supported in part by the National Foundation of Natural Science of China.

