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Abstract

In this paper, we improve known results on the convergence rates of spectral distributions of
large dimensional sample covariance matrices of sizep � n. Depending on the limiting value
y of the ratiop=n and by using the tool of Stieltjes transforms, we first prove that the expected
spectral distribution converges to the limiting Marˇcenko-Pastur distribution at a rate ofO(n�

1

2 )

for y =2 f0; 1g, and ofO(n�
1

4 ) for y = 1, under the assumption that the entries have a finite 8-th
order moment. Furthermore, the rates for both the convergence in probability and the almost sure
convergence are investigated.
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1 Introduction

The spectral analysis of large dimensional random matrices has been actively developed in the last
decades since the initial contributions of Wigner (1955, 1958), see the review by Bai (1999) and the
references therein. Various limiting distributions were discovered including the Wigner semicircu-
lar law (Wigner, 1955), the Marˇcenko-Pastur law (Marˇcenko and Pastur, 1967) and the circular law
(Bai,1997).

Let A be ann � n symmetric matrix, and�1 � � � � � �n be the eigenvalues ofA. The spectral
distributionFA of A is defined as

FA(x) =
1

n
� number of elements infk : �k � xg :

LetXp = (xij)p�n be ap � n observation matrix whose entries are mutually independent and have
a common mean zero and variance 1. The entries ofXp may depend onn but we suppress the index
n for simplicity. In this paper, we consider the sample covariance matrixSp = n�1XpX

0
p. Assume

that the ratiop=y of sizes tends to a positive limity asn ! 1. Under suitable moment conditions
on the entriesxij ’s, it is known that the empirical spectral distribution (ESD)Fp := FSp converges to
the following Marčenko-Pastur distributionFy with indexy with density

F 0
y(x) =

8<:
1

2�xy

p
(x� a)(b� x) ; if a < x < b

0 ; otherwise,

wherea = (1�py)2, b = (1 +
p
y)2.

An important question arose here is the problem of the convergence rates. However, no significant
progress had been made before the introduction of a novel and powerful tool, namely the Stieltjes
transforms, by Bai (1993a,1993b). Using this methodology, Bai (1993b) proved that the expected
ESD, EFp converges toFy at a rate ofO(n�1=4) andO(n�5=48) according toy 6= 1 or y = 1,
respectively. In a further work by Baiet al. (1997), these rates are also established for the convergence
in probability of the ESDFp itself.

In this work, we prove the following theorems which give a significant improvement of these rates.
The following conditions will be used.

(C.1) Exij = 0, Ex2ij = 1, 1 � i � p; 1 � j � n,

(C.2) sup
i;j;n

Ejxij j8 <1 ,

(C.3)
X
ij

Ex8ij I(jxijj�"
p
n) = o(n2) , for any" > 0.

(C.2’) sup
i;j;n

Ejxij jk <1 , for all integerk � 1.

Throughout the text, we use the notationZn = Op(an) if the sequence(a�1n Zn) is tight, andZn =
op(an) whena�1n Zn tends to 0 in probability. Let bekfk = supx jf(x)j.
Theorem 1.1 Assume that the conditionsC.1-2-3are satisfied. Then

kEFp � Fyk =

8><>:
O(n�

1

2 ); if 0 < y < 1

O(n�
1

4 ); if y = 1:

2



Theorem 1.2 Assume that the conditionsC.1-2-3are satisfied. Then

kFp � Fyk =

8><>:
Op(n

� 2

5 ); if 0 < y < 1

Op(n
� 2

9 ); if y = 1:

Theorem 1.3 Assume that the conditionsC.1-2’-3are satisfied. Then, for all� > 0 and almost surely,

kFp � Fyk =

8><>:
o(n�

2

5
+�); if y 6= 1;

o(n�
2

9
+�); if y = 1:

It is worth noticing that the convergence rates given above for the case0 < y < 1 also apply to
the casey > 1, since the last case can be reduced to the first case by interchanging the roles of row
and column sizesp andn.

The proofs of these main results will be given in Section 4. To simplify their presentation, we first
establish several intermediate results in Section 3 after the introduction of some necessary notations
and preliminary consequences in Section 2.

2 Definitions and easy consequences

Throughout the paper, the transpose of a possibly complex matrixA is denoted byAT, and its con-
jugate byA. For each fixedp; n andk = 1; : : : ; p, let us denote byxk = (xk1; : : : ; xkn)T thek-th
row ofXp arranged as a column vector,Xp(k) be the(p � 1)� n sub-matrix obtained fromXp by
deleting itsk-th row. Let us define

�k :=
1

n
Xp(k)xk; Sk :=

1

n
Xp(k)X

T
p (k) Bk :=

1

n
XT

p (k)DkXp(k);

B :=
1

n
XT

pDXp Dk := (Sk � zIp�1)�1; D := (S� zIp)
�1;

�k := DkDk; �k := DkSkDk :

(2.1)

HereIm is them-dimensional identity matrix andz a complex number with a positive imaginary part.
Following Bai (1993b), the Stieltjes transform of the spectral distributionFp of the sample covari-

ance matrixSp is defined forz = u + iv with v > 0, by

mp(z) =

Z 1

�1

1

x� z
dFp(x);

and it is well-known that

mp(z) =
1

p
tr(S� zIp)

�1 :

Similarly, the Stieltjes transform of the spectral distributionF
(k)
p of the sub-matrixSk satisfies

m(k)
p (z) =

Z 1

�1

1

x� z
dF (k)

p (x) =
1

p� 1
tr(Sk � zIp�1)�1 :
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Lastly, the Stieltjes transform of the (limiting) Marˇcenko-Pastur distributionFy is

m(z) :=

Z 1

�1

1

x� z
dFy(x)

=

8>>><>>>:
�y + z � 1�

p
(1� y � z)2 � 4y
2yz ; 0 < y < 1;

�z �
p
z2 � 4z
2z ; y = 1:

(2.2)

Here the square root
p
z is the one with a positive imaginary part. Bai (1993b) also provided the

following bounds form(z) which will play a key role in next derivations :

m(z) �

8>>><>>>:
1 + 3

p
yp

y(1� y)
; 0 < y < 1;

2p
v
; y = 1:

(2.3)

Lemma 2.1 Let x = (x1; : : : ; xn)
T and y = (y1; :::; yn)

T be independent real random vectors
with independent elements. Suppose that for all1 � j � n, Exj = Eyj = 0, Ejxj j2 =
Ejyj j2 = 1, Ejxj j4 � L < 1, and thatA is an n � n complex symmetric matrix. Let�k =
maxj�n( Ejxj jk; Ejyj jk). Then

(i). EjxTAyj2 = tr(A �A) ;

(ii). EjxTAxj2 � (L� 1)tr(A �A) + jtrAj2 ;

(iii). EjxTAx� trAj2 � (L� 1)(trA �A) ;

(iv). EjxTAx� trAj2k � dk
�
�4ktr(A �A)k + (Ltr(A �A))k

�
for k � 2 and some positive con-

stantdk depending onk only.

Lemma 2.1 can be proved in an elementary way and is stated in Baiet al. (1997).

Lemma 2.2 LetG1 andG2 be probability distribution functions andz = u + iv, v > 0. Then for
each positive integerm,

����Z 1

�1

1

jx� zjmd(G1(x)�G2(x))

���� � 2

vm
kG1 �G2k:
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Proof. Let beG� := G1 �G2. We have, by integration by parts,����Z 1

�1

1

jx� zjm dG�
����

=

����� Z 1

�1
G�(x)d

�
1

jx� zjm
�����

=

������
Z Re(z)

�1
G�(x)d

�
1

jx� zjm
�
+

Z 1

Re(z)
G�(x)d

�
� 1

jx� zjm
������

� kG�k
(Z Re(z)

�1
d

�
1

jx� zjm
�
+

Z 1

Re(z)
d

�
� 1

jx� zjm
�)

= kG�k
(

1

jx� zjm
����Re(z)
�1

+

 
� 1

jx� zjm
����1
Re(z)

!)
= kG�k 2

vm
:

We will need the following auxiliary variables.

"k = � 1

n

nX
j=1

(x2kj � 1) +
1

n
(xk

0Bkxk � EtrB);

"�k = � 1

n

nX
j=1

(x2kj � 1) +
1

n
(xk

0Bkxk � trBk);

e"k =
1

n
(trBk � EtrBk ) =

z

n
(trDk � EtrDk );

�k =
1

n
E(trBk � trB) =

z

n
E(trDk � trD)� 1

n
;

�k = � 1

n

nX
j=1

(x2kj � 1) + z � 1 +
1

n
xk

0Bkxk;

��k = z � 1 +
1

n
trBk ;

� = z � 1 +
1

n
trB

We summarize below some inequalities which will be used in the derivations. Let� = k EFp �
Fk andM := supi;j;n Ejxij j4. For fixed(n; p) and1 � k � p, we define the�-algebraF (k) =

�(xi : i = 1; : : : ; p ; i 6= k) andFk = �(xi : i = 1; : : : ; p ; i > k). Notice thatFk � F (k).

(i). (Lemma 3.3 of Bai (1993a)) :

j(p� 1)F (k)
p (x)� pFp(x)j � 1: (2.4)

(ii). ((3.11) of Bai (1993a)) :

jtrD� trDk j =
�����
Z 1

�1

d[pFp(x)� (p� 1)F
(k)
p (x)]

x� z

����� � v�1: (2.5)

(iii). ((4.7) of Bai (1993a)) :

mp(z) = �1

p

pX
k=1

1

�k
: (2.6)
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(iv). (Lemma 2.2 of Baiet al. (1997)) :

E jmp(z)� E(mp(z))j2 � p�1v�2: (2.7)

(v). (from j��kj � Im(��k) = v(1 + n�1tr�k)) :

j��kj�1(1 + n�1tr�k) � v�1: (2.8)

(vi).

j�kj � Im(�k) = v(1 +
1

n
�TkDkDk�k): (2.9)

(vii).

j1 + 1

n
�TkDk

2�k j � 1 +
1

n
�TkDkDk�k: (2.10)

Let �kj , j = 1; 2; : : : ; p � 1, be the eigenvalues ofSk which can be decomposed in a diago-
nal form on a basis of orthonormal and real eigenvectors. LetL be a complex matrix having the
product formL = M`N`0 for some integers̀; `0 and factorsM; N equal to one of the matrices
fDk ;Dk;Bk;Bkg. An important feature that we will frequently use in the sequel is that such a ma-
trix L can be decomposed into a diagonal formon the same basis of the eigenvectors ofSk . Moreover,
the eigenvalues ofL can be straightforwardly expressed in term of the�kj ’s. In particular, we have
the following

Lemma 2.3 Assume thatjzj � T whereT � 1. Then for all integers̀ � 1

tr(�k)
` �

�
1

v2

�`�1
tr�k ; (2.11)

tr(�k)
` �

�
T

v2

�`�1
tr�k : (2.12)

Proof. (i) The inequality (2.11) follows from

tr(�k)
` =

p�1X
j=1

1

j�kj � zj2` � v�2(`�1)
p�1X
j=1

1

j�kj � zj2 = v�2(`�1)tr�k :

(ii) For the inequality (2.12), we have

tr(�k)
` =

p�1X
j=1

�`kj
j�kj � zj2` :

The conclusion follows from that The function'(�) := ��1j�� zj2 defined on(0;1) is convex and
has an unique minimum of value'� satisfying

'� = 2(
p
u2 + v2)� u = 2

v2

jzj+ u
� v2

T
:
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Lemma 2.4 For the Marčenko-Pastur distributionFy , we have

Z b

a

1

jx� zj2dFy(x) �
8<:

1
(1�y)py v

�1 ; 0 < y < 1 ;

jzj�1v�1=2 ; y = 1 :

(2.13)

Proof. For 0 < y < 1, we have by elementary calculus that the density functionFy
0(x) has an

unique maximum of value(�(1� y)
p
y)�1. ThusZ b

a

1

jx� zj2dFy(x) � 1

�(1� y)
p
y

Z b

a

1

jx� zj2dx

� 1

(1� y)
p
y
v�1 :

Wheny = 1, a = 0 andb = 4. We find thatZ b

a

1

jx� zj2dFy(x)

� 1

�

Z 4

0

dxp
x[(x� u)2 + v2]

� 1

�

Z 1

0

dxp
x[(x� u)2 + v2]

� jzj�1v�1=2:

Lemma 2.5 For the Marčenko-Pastur distributionFy , we have for any0 < v < 4
p
y,

sup
x

Z
juj�v

jFy(x+ u)� Fy(x)j du �
14
p

2(1 + y)

3�y

1p
v + (1�py)v

2 :

Proof. It is enough to consider the part0 � u � v only in the integral since the remaining part
for �v � u � 0 can be handled in a similar way. Setx = a + � with � � 0 and�(�) :=R v
0 [Fy(x+ u)� Fy(x)]du. Then

�(�) =

Z v

0
du

Z x+u

x

Fy
0(t) dt =

Z a+�+v

a+�

a+ �+ v � t

2�yt

p
(t� a)(b� t)dt

=

Z �+v

�

�+ v � u

2�y(u+ a)

q
u(4

p
y � u) du : (2.14)

Let �(u) := (u+ a)�1
p
u(4

p
y � u).

Case0 < y < 1 : We havea > 0 and the derivative oflog(�(u))2 is

1

u
� 1

4
p
y � u

� 2

u+ a
=

2(2
p
ya� (1 + y)u)

u(4
p
y � u)(u+ a)

Let � := (1 + y)�1(2apy). Thus�(u) is decreasing whenu > � and increasing whenu < �. Since

d�(�)

d�
=

1

2�y

�Z �+v

�
[�(u)� �(v)] du

�
;
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it follows that for� > �, �(�) is decreasing and then�(�) � �(�) ; and for� < � � v, �(�)
is increasing and then�(�) � �(� � v). Hence�(�) reaches its maximum only for some� 2
(max(�� v; 0); �). Now suppose that� 2 (�� v; �), it follows from (2.14) that

�(�) � 2y1=4

2�y

Z �+v

�

�+ v � u

u+ a

p
udu

= 2(�y3=4)�1
n
(�+ v + a)

h
(
p
�+ v �

p
�)

�pa
 
arctan

r
�+ v

a
� arctan

r
�

a

!#
� 1

3

h
(�+ v)3=2� �3=2

i)
:

Notice that�pa arctan xp
a

is convex , we get

1p
a

 
arctan

r
�+ v

a
� arctan

r
�

a

!
� a

�+ v + a

�p
�+ v �

p
�
�
;

and by setting�� =
p
�+ v �

p
�, we have

�(�) � 2

�y3=4
f(a+ �+ v)(��� a

a+ �+ v
��)� (��(�+

p
��� +

1

3
��2)g

=
2

�y3=4

�p
���2 +

2

3
��3
�
: (2.15)

Let c2 = 1+y
2
p
y . Since�+ v � c�2a, we have

p
�

(
p
�+ v +

p
�)2

� cp
a+

p
v
;

1

(
p
�+ v +

p
�)3

� 2c

(
p
a+

p
v)v

:

Hence

�(�) � 2

�y3=4
� 7c

3(
p
a+

p
v)
v2 =

7
p

2(1 + y)

3�y

1p
v + (1�py)v

2:

Casey = 1 : Herea = 0 and

�(�) =

Z �+v

�

�+ v � u

2�

r
4� u

u
du

d�(�)

d�
=

1

2�

Z �+v

�

"r
4� u

u
�
r

4� �

�

#
du :

But (4� u)=u is decreasing foru > 0, thus�(�) is decreasing for� � 0. Hence

�(�) � �(0) =

Z v

0

v � u

2�

r
4� u

u
du � 2

�
v3=2:

Combining these two cases proves the lemma.
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3 Intermediate lemmas

In this section, we establish some more technical lemmas. Let�` = supi;j;nfEjxijj`g.
Lemma 3.1 For each` > 1=2 with �4` < 1, there exist positive constantsc` independent ofn and
v, such that for alln; v satisfyingnv � T , we have

E

�
j"�kj2`

���F (k)
�
� c`n

�`
�
1 +

1

n
tr�k

�`

(3.1)

and

E

 
("�k)

2`

j��k j`

�����F (k)

!
� c`n

�`v�` : (3.2)

Proof. We have

E

�
j"�kj2`jF (k)

�
= E

0B@
������� 1

n

nX
j=1

(x2kj � 1) +
1

n
(x0kBkxk � trBk)

������
2`
�������F (k)

1CA
� 22`�1n�2`

8><>: E

������
nX

j=1

(x2kj � 1)

������
2`

+ E

�
jx0kBkxk � trBk j2`

���F (k)
�9>=>;

:= A+B :

For the first termA, by the Burkholder inequality, we get

E

������
nX

j=1

(x2kj � 1)

������
2`

� c` E

24 nX
j=1

(x2kj � 1)2

35` � c`n
`�1

E

24 nX
j=1

(x2kj � 1)2`

35 � c`�4`n
` :

For the second termB, we first notice that

tr
�
BkBk

�
= trBk + ztr�k ;

and

1

n
jtrBkj =

���y + z

n
trDk

��� � 1 +
T

nv
� 2 :

Hence

1

n
tr
�
BkBk

� � 2 +
T

n
tr�k � T

�
1 +

1

n
tr�k

�
:

Therefore by Lemma 2.1,

E
�
jx0kBkxk � trBk j2`

���F (k)
�

� c`(�4` +M `)(trBkBk)
` � c`T

�`n�`
�
1 +

1

n
tr�k

�`

:
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Combining the bounds forA andB proves the first conclusion. The second conclusion immediately
follows by taking into account the inequality (2.8).

Lemma 3.2 If n�1=2 � v < 1, then there are positive constantsC1; C2 such that for largen and
eachk � n,

(i). j Etr(DkDk)j � C1p
�+ v
v2

:

(ii). E j"�kj2 � C2
1
n

�
1 + jzj2�+ v

v2

�
:

Proof. (i). Recall that� = k EFp � Fyk. By Lemma 2.2,����Z 1

�1

1

jx� zj2d( EFp(x)� Fy(x))

���� � 2�

v2
:

Application of Lemmas 2.1 and (2.4) yields that

j Etr(DkDk)j =

����(p� 1)

Z 1

�1

1

jx� zj2d[ EF
(k)
p (x)]

����
�

����Z 1

�1

1

jx� zj2d[(p� 1) EF (k)
p (x)� p EFp(x)]

����
+p

����Z 1

�1

1

jx� zj2d[ EFp(x)� Fy(x)]

����+ p

����Z 1

�1

1

jx� zj2dFy(x)
����

� 2

v2
+ p

2�

v2
+ p

����Z 1

�1

1

jx� zj2dFy(x)
���� :

By Lemma 2.4, the last term is bounded byC3pv
�1 or C3p(jzjpv)�1 according to0 < y < 1 or

y = 1. Taking into account the conditionv
p
n � 1, we have for largen, pv � 2C3 for the first case

and for the second one, since
p
v � v � jzj, ppv � 2C3. The conclusion (i) follows in both cases.

(ii). The conclusion follows from (i), (3.1) and the fact

trBkBk = tr(Ip�1 + zDk)(I + zDk) � 2(p+ jzj2trDkDk) :

Let us definevy = v for 0 < y < 1 andvy =
p
v for y = 1.

Lemma 3.3 Assumejzj � T with T � 2, and
p
nv � 6

p
2T (M + 2). Then for largen and a

positive constantsC1 ,

pX
k=1

E(j��kj�1) � C1n(� + vy)v
�1 : (3.3)

Proof. First notice that from the definition of"�k, we have(��k)
�1 = ��1k (1 + ��1k "�k). By (2.5),

j��k � �j = 1

n
j � 1 + z(trDk � trD)j � 1

n
(1 +

jzj
v
) � 2T

nv
:
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Taking account of (2.6) and (3.2), we obtain

pX
k=1

E(j��k j�1)

�
pX

k=1

E

���� 1

j��k j
� 1

j�j
����+ E

�����
pX

k=1

(
1

�
� 1

��k
)

�����+ E

�����
pX

k=1

(
1

��k
� 1

�k
)

�����+ E

�����
pX

k=1

��1k

�����
� 2

pX
k=1

E
j��k � �j
j�jj��kj

+

pX
k=1

E
j"�kj
j��kj2

+

pX
k=1

E
j"�kj2

j�kjj��kj2
+ p E jmp(z)j

� 4T

nv2

pX
k=1

E(j��kj�1) +
pX

k=1

E
( E(j"�kj2jF (k)))1=2

j��kj2
+

pX
k=1

E
E (j"�kj2jF (k))

vj��kj2
+ p E jmp(z)j

� (
4T

nv2
+ (2MT )1=2n�1=2v�1)

pX
k=1

E (j��kj�1) +
2MT

nv2

pX
k=1

E(j��kj�1) + p E jmp(z)j

� (2T (2 +M)v�2n�1 + (2MT )1=2n�1=2v�1)
pX

k=1

E(j��k j�1) + p E jmp(z)� E (mp(z))j

+pj E(mp(z))�m(z)j+ pjm(z)j

� 2[2T (2+M)]1=2v�1n�1=2
pX

k=1

E(j��kj�1) +
p
pv�1 + 2p�v�1 + pjm(z)j:

Since2[2T (2+M)]1=2v�1n�1=2 < 1=3, we find

pX
k=1

E(j��kj�1) �
3

2

�p
pv�1 + 2p�v�1 + pjm(z)j� :

Notice that for largen, 1
2yn � p � 3

2yn. The conclusion follows by taking into account the bounds
for m(z) given in Eq. (2.3).

Lemma 3.4 Let zk = E (trDjFk�1) � E (trDjFk). ThentrD � EtrD =
Pp

k=1 zk and(zk) is
a martingale difference with respect to(Fk), k = p; p� 1; : : : ; 0. Moreover, we have the following
formula forzk

zk = f E (ak jFk�1)� E (akjFk)g � E (bkjFk�1) ;

with

ak =
"�k(1 + �TkDk

2�k)

��k�k
; bk =

�TkDk
2�k � 1

n tr[(I+ zDk)Dk]

��k
: (3.4)

Proof. Since E(trDk jFk�1) = E (trDkjFk), we have

zk = E [(trD� trDk)jFk�1]� E [(trD� trDk)jFk]:

11



On the other hand,

trD � trDk = �1 + 1
n�

T
kDk

2�k

�k

= �1 + 1
n tr[(I+ zDk)Dk]

��k
+
"�k(1 + �TkDk

2�k)

��k�k
� �TkDk

2�k � 1
n tr[(I+ zDk)Dk]

��k

= �1 + 1
n tr[(I+ zDk)Dk]

��k
+ ak � bk :

The conclusion follows from

E

 
1 + 1

n tr[(I+ zDk)Dk]

��k

�����Fk�1

!
= E

 
1 + 1

n tr[(I+ zDk)Dk]

��k

�����Fk

!
;

and

E

�
�TkDk

2�k
��F (k)

�
=

1

n
tr[(I+ zDk)Dk] :

Lemma 3.5 For each` > 1=2 with �4` <1, there exist positive constantsc` andL0 independent of
n andv, such that for alln; v satisfyingL0n

�1=2 � v < 1,

Ejmp(z)� Emp(z)j2` � c`n
�2`v�4`(�+ vy)

` :

Proof. In the proof of this lemma,c` andc`;0 will be used to denote universal positive constants
which may depend on the moments up to order` of underlying variables and may represent different
values at different appearance, even in one expression. Recall that we have

mp(z)� Emp(z) =
1

p
[trD� EtrD] =

pX
k=1

zk ;

where the(zk) are defined in Lemma 3.4. We have

E

�
jzkj2`

���Fk

�
= E

����[ E (ak jFk�1)� E (akjFk)]� E (bkjFk�1)
���2`����Fk

�
� 22`�1 E

n
[ E (ak jFk�1)� E (akjFk)]

2` + [ E (bkjFk�1)]2`
���Fk

o
� 22`�1 E

n
[ E (ak jFk�1)]2` + [ E (bkjFk�1)]2`

���Fk

o
� 22`�1

n
E

�
(ak)

2`
���Fk

�
+ E

�
(bk)

2`
���Fk

�o
:

Note that by (2.9) and (2.10),jakj � v�1 j"�k=��k j. Hence by Lemma 3.1

E

�
jakj2`

���F (k)
�
� 1

v2`
E

 ���� "�k��k
����2`
�����F (k)

!
� c`;0n

�`v�3`j��k j�` :

On the other hand, by Lemma 2.1 and assuming` � 1,

E

�
jbkj2`

���F (k)
�
� c`;0(n�

�
k)
�2`(�4` +M `)

�
tr(I+ zDk)(I+ zDk)DkDk

�`
:

12



Since from (2.8) and (2.12), it holds that

j��k j�1tr(I+ zDk)(I+ zDk)DkDk � j��kj�1tr�2
k � nTv�3 ;

we obtain

E

n
jbkj2`

���Fk

o
� c`;0n

�`v�3` E
h
j��kj�`

���Fk

i
:

Therefore for all̀ � 1,

E

�
jzkj2`

���Fk

�
� c`;0n

�`v�3` E
h
j��kj�`

���Fk

i
� c`;0n

�`v�4`+1 E
� j��k j�1��Fk

�
(3.5)

Applying Lemma 3.3 gives for̀ � 1

nX
k=1

Ejzk j2` � c`;0n
�`+1(�+ vy)v

�4`: (3.6)

Case` = 1 : Since thatfzkg is a martingale difference sequence, the above inequality yields

Ejmp(z)� Emp(z)j2 = n�2
pX

k=1

Ejzk j2 � c1;0n
�2(� + vy)v

�4: (3.7)

The lemma is proved in this case.

Case1
2 < ` < 1 : By applying the Burkholder inequality for martingales (see Burkholder (1973))

and using the the concavity of the functionx`, we find

Ejmp(z)� Emp(z)j2`

� c`p
�2`

E

 
pX

k=1

jzkj2
!`

� c`n
�2`

"
E(

pX
k=1

jzkj2)
#`
� c`n

�2` �(� + vy)v
�4�` ;

where the last step follows from the previous case` = 1. The lemma is then proved in this case.

Case` > 1 :
We proceed by induction in this general case. First, by another Burkholder inequality for martin-

gales, we have

Ejmp(z)� Emp(z)j2` � c`p
�2`

8<:
pX

k=1

Ejzk j2` + E

 
pX

k=1

E(jzk j2jFk)

!`
9=;

=̂ I1 + I2: (3.8)

By (3.6)

I1 � c`;0(�+ vy)n
�3`+1v�4`: (3.9)

The lemma has been already proved for1
2 < ` � 1. Suppose that the lemma is true for` � 2t.

Now, we consider the case where2t < ` � 2t+1. Application of (3.5) with̀ = 1 gives

nX
k=1

E
� jzkj2��Fk

� � c1;0n
�1v�3

pX
k=1

E
� j��kj�1��Fk

�
:

13



Hence,

I2 � c`;0(nv)
�3`

E

 
pX

k=1

E(j��k j�1jFk)

!`

� c`;0n
�2`�1v�3`

pX
k=1

Ej��k j�`: (3.10)

Notice that ifL0 >
p
2 thennv2 > 2 and that���j�j�1 � j��kj�1��� � j��1 � (��k)

�1j = jtrD� trDk j
pj�jj��kj

� 1

pv2
min(j�j�1; j��kj�1)

(this comes from (2.5) andj���k j�1 � v�1min(j�j�1; j��k j�1)). This yields

j��k j�1 � j�j�1 + p�1v�2j��k j�1 � 2j�j�1

and

jp��1j �
�����

pX
k=1

(��k)
�1
�����+

pX
k=1

j(��k)�1 � ��1j �
�����

pX
k=1

(��k)
�1
�����+ v�2j�j�1

� 2

�����
pX

k=1

(��k)
�1
����� � 2

�����
pX

k=1

((��k)
�1 � ��1k )

�����+ 2

�����
pX

k=1

��1k

�����
� 2

pX
k=1

j"�kj2
j�kjj��kj2

+ 2pjmp(z)j:

Therefore, by applying Lemma 3.1 and if we chooseL0 > (2c`;0)
1=` so thatc`;0n�`v�2` < 1=2, we

have

pX
k=1

Ej��k j�` � c`;0

 
v�`

pX
k=1

E
j"�kj2`
j��k j2`

+ p Ejmp(z)j`
!

� c`;0

 
n�`v�2`

pX
k=1

Ej��k j�` + p Ejmp(z)j`
!

� 2c`;0p Ejmp(z)j`:

From the above inequality and (3.10), we get

I2 � c`n
�2`v�3` Ejmp(z)j`

� c`n
�2`v�3`

h
Ejmp(z)� Emp(z)j` + j Emp(z)�m(z)j` + jm(z)j`

i
� c`n

�2`v�3`
h
Ejmp(z)� Emp(z)j` + (�+ vy)

`v�`
i
: (3.11)

It can be readily checked that the ratio of the upper bound forI1, Eq. (3.9), over the second term from
the last inequality is bounded by a constant (for both cases0 < y < 1 andy = 1), namely

(� + vy)n�3`+1v�4`

n�2`v�3`(�+ vy)`v�`
=

�
1

n(� + vy)

�`�1
� 1 ;

14



becausenv2 � 1 andv � 1. Therefore by (3.8) and (3.11), it follows that

Ejmp(z)� Emp(z)j2`
� c`n

�2`v�3` Ejmp(z)� Emp(z)j` + c`n
�2`(�+ vy)

`v�4`: (3.12)

Finally by the induction hypothesis, we find

Ejmp(z)� Emp(z)j2`

� c`n
�2`v�3`

h
n�`v�2`(� + vy)

`=2
i
+ c`n

�2`(� + vy)
`v�4`

=

"�
1

n2v2(�+ vy)

�`=2

+ 1

#
c`n

�2`(�+ vy)
`v�4`

� 2c`n
�2`(� + vy)

`v�4` :

The proof of Lemma 3.5 is complete.

Remark 3.1. Application of Lemma 3.5 to the case` = 1 gives that there is some constantc1 > 0
such that

EjtrD � EtrDj2 � c1(� + vy)v
�4: (3.13)

It is also worth noticing that if we substituteD for anyDk with k � n, Lemma 3.5 as well as the
above consequence (3.13) are still valid, with slightly different constantsc`’s.

4 Proofs

Suppose thatG is a function of bounded variation. The Stieltjes transformg of G is defined as

g(z) =

Z 1

�1

1

x � z
dG(x);

wherez = u+ iv andv > 0. Our main tool is the following proposition (Bai (1993a)).

Proposition 4.1 LetG be a distribution function andH be a function of bounded variation satisfyingR jG(x)�H(x)j dx <1. Denote their Stieltjes transforms byg(z) andh(z), respectively. Then

kG�Hk � 1

�(1� �)(2 � 1)

"Z A

�A
jg(z)� h(z)j du+

2�

v

Z
jxj>B
jG(x)�H(x)j dx

+
1

v
sup
x

Z
jyj�2va

jH(x+ y)�H(x)j dy
#
;

where the constantsA > B,  anda are restricted by

 =
1

�

Z
juj�a

1

u2 + 1
du >

1

2
; and � =

4B

�(A� B)(2 � 1)
2 (0; 1):
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Denote the Stieltjes transform ofFp andFy bymp(z) andm(z), respectively. By Proposition 4.1
with A = 25, B = 5 and Lemma 2.5, we have, for some constantc > 0,

k EFp � Fk �c
"Z A

�A
j Emp(z)�m(z)j du+ 1

v

Z
jxj>5

j EFp(x)� e(x)j dx+ vy

#
; (4.1)

wheree(x) = 1 for x > 0 ande(x) = 0 otherwise.
In the sequel, for brevity,c will be an universal constant which is not related to the estimation of

the order. Since it is already proved in Bai (1993a) that� = k EFp � Fyk = O(n�1=4), � will be
treated as of ordern�1=4.

4.1 Proof of Theorem 1.1

We will estimate the first two terms on the right hand side of (4.1) with various choices ofv, subject
to v ' n�1=2. We begin with the the second term. Let�p be the largest eigenvalue ofSp and recall
thatb = (1 +

p
y)2. Yin, Bai and Krishnaiah [1988] proved that under the conditionsC.1-2-3, one

can find two sequences(�p) and(mp) satisfying�p ! 0 andm�1
p log n! 0 such that

E(�p)
m � (b+ �p)

mp : (4.2)

Notice that

1� Fp(x) � If�p�xg; for x � 0 : (4.3)

TakeB = 5, we get for allt > 0Z 1

B
EjFp(x)� Fy(x)j dx

�
Z 1

B
P (�p � x) dx �

Z 1

B

�
b+ �p
B

�mp

dx = o(n�t) :

Thus the second term of the equation (3.1) can be neglected. Therefore what remains is to estimate
the order of the first term of (4.1).

By Eq. (3.14) of Bai [1993b],

mp(z) =

Z 1

0

1

x� z
dFp(x) =

1

p
trD = �1

p

pX
k=1

1

�k
:

Let us define�p such that

mp(z) = � 1

z + y � 1 + yzEmp(z)
+ �p = � 1

E�
+ �p :

Since

1

�k
=

1

E�

�
1� "k

�k

�
;

it is easy to see that

�p =
1

p

pX
k=1

1

E�

"k
�k

=
1

( E�)2

 
1

p

pX
k=1

"k � 1

p

pX
k=1

"2k
�k

!
:
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Now

j E�pj

� 1

pj E�j2
pX

k=1

(j E"kj+ j E "
2
k

�k
j)

=
1

pj E�j2
pX

k=1

�
j E ("�k + ~"k) + �kj+

���� 1

E�
E"2k �

1

( E�)2
E"3k +

1

( E�)2
E(

"4k
�k

)

�����

� 1

pj E�j2
"

pX
k=1

j E("�k + ~"k) + �kj+
pX

k=1

���� 1

E�
E"2k

����+ pX
k=1

���� 1

( E�)2
E"3k

����
+

pX
k=1

���� 1

( E�)2
E(

"4k
�k

)

����
#

= j E�j�2 [I0 + I1 + I2 + I3] :

We will estimate each ofIi’s to obtain a bound onj E�pj (cf. (4.4)). Since thatE("�k + ~"k) = 0, by
(2.5), we have

I0 =
1

p

pX
k=1

j�kj = 1

pn

pX
k=1

j E trDk � E trDj � 1=(nv) � Cvv:

Here and hereafter, the symbolCv denotes a positive constant which may be made arbitrarily small
by choosing

p
nv large. From Lemma 3.2, Remark 3.1 and noticing thatv � vy , we have

I1 � 1

pj E�j
pX

k=1

E j"kj2 = 1

pj E�j
pX

k=1

( E j"�k j2 + E j~"kj2 + j�kj2)

� c

j E�j
��

1

n
+

�+ vy
nv2

�
+

�+ vy
n2v4

+
1

n2v2

�
� c(�+ vy)

j E�jnv2 � Cv(�+ vy)

j E�j ;

I2 =
1

pj E�j2
pX

k=1

j E"3k j �
1

pj E�j2
pX

k=1

( E j"kj2 + E j"kj4):

Now

1

p

pX
k=1

E j"kj4 � 27

p

pX
k=1

( E j"�kj4 + E j~"kj4 + j�kj4) =̂ c(I21+ I22 + I23):

Since

trBkBk = tr(Ip�1 + zDk)(I + zDk) � 2(p+ jzj2trDkDk) ;

We have from the proof of Lemma 3.1,

Ej"�k j4 � cn�2
�
1 + n�2 E(trBkBk)

2
	

� cn�2
�
1 + n�2 E(trDkDk)

2
	
:
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Now

E(tr(DkDk))
2 = v�2 E(Im(tr(Dk)))

2

� 2v�2[v�2 + E(Im(tr(D)))2]

= 2v�4 + 2p2v�2 E(Im(mp(z)))
2

� 2v�4 + 4p2v�2j Emp(z)j2 + 4p2v�2 E jmp(z)� Emp(z)j2
� cp2v�4(�+ vy)

2 + cv�6(� + vy);

where the second inequality follows from (2.5) and the last step follows from Lemma 3.5 andj Emp(z)j �
j Emp(z)�m(z)j+ jm(z)j � v�1(2�+ �yvy) with �y := (1 + 3

p
y)=[

p
y(1� y)] for 0 < y < 1

and�y := 2 for y = 1. Thus

I21 � c
�
n�2 + n�4v�4 + n�2v�4(� + vy)

2 + n�4v�6(� + vy)
	

� Cv[v
2
y + �2] :

Also, consideringDk instead ofD as in Lemma 3.5 and applying (2.4), one can show that for some
L0 such that for allL0n

�1=2 � v < 1,

I22 � c(�+ vy)
2n�4v�8 � Cv[v

2
y +�2]:

Sincej�kj � jzj(nv)�1, we haveI23 � jzj4(nv)�4, and hence,

p�1
pX

k=1

E j"kj4 � c(I21+ I22 + I23)

� c[Cv(�
2 + v2y) + Cv(�

2 + v2y) + (nv)�4]

� Cv(�
2 + v2y):

Consequently, for some constantCv > 0,

I2 � c(� + vy)

j E�j2nv2 +
Cv

j E�j2 (v
2
y + �2) � Cv(� + vy)

j E�j2 ;

and

I3 � 1

pvj E�j2
pX

k=1

E j"k j4 � Cv

vj E�j2 (�
2 + v2y):

Summing up the above results, we obtain

j E �pj � 1

j E�j2 [I0 + I1 + I2 + I3]

� Cv

j E�j2
"
v +

�+ vy
j E�j +

�+ vy
j E�j2 +

�2 + v2y
vj E�j2

#
: (4.4)

On the other hand, by Lemma 2.2 and (4.1), we have

1

j E�j = j� E�p + E[mp(z)�m(z)] +m(z)j � j E�pj+ 2�+ �yvy
v

: (4.5)
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Note that the estimates (4.4) and (4.5) are valid for allL0n
�1=2 � v < 1. As proved in Bai (1993b

(see Eq. (3.39)-(3.40) there), there is a constantc such that for everyv > 0Z A

�A
j Emp(z)�m(z)j du < cv

provided thatsupu j E�nj � v (here and hereafter,supu refers tosupjuj�A). Thus, ifsupu j E �pj � v,
in view of (4.1), we can find a positive constantc1 such that

� < c1vy: (4.6)

Part (i) of Theorem 1.1 :

In this part,0 < y < 1 andvy = v. WriteM0 = (1 + 2c1 + �y) and selectL > L0 such that when
Ln�1=2 � v < 1, we have

C�1
v > M2

0 [1 + (1 + c1)M0 + (2 + c1 + c21)M
2
0 ] :

The proof will be complete once we have shown that for all largen andLn�1=2 � v < 1,

sup
u
j E�pj � v: (4.7)

It is proved in Bai (1993b) that (4.7) holds for all largen andc2n�1=4 � v < 1, wherec2 > 0 is
a constant, and hence� < c1v. Applying these to (4.5), we have

j E�j�1 � v + 2�=v + �y < M0: (4.8)

This means that for all largen andc2n�1=4 � v < 1, both (4.7) and (4.8) hold. Now lettingv decrease
toLn�1=2, sincesupu j E�pj is continuous inv, one of the following cases must hold:

Case 1.supu j E�pj < v is true for allLn�1=2 � v < 1;
Case 2. There is av 2 [Ln�1=2; c2n�1=4) such thatsupu j E�pj = v

andj E�j�1 �M0;
Case 3. There is av 2 [Ln�1=2; c2n�1=4) such thatsupu j E�pj < v

andj E�j�1 = M0.

The theorem then follows if Case 1 is true. Thus to complete the proof of the theorem, it suffices to
show that Cases 2 and 3 are impossible. Note that in either Cases 2 or 3, we have� < c1v by (4.6).

If Case 3 happens, then there existv0 2 [Ln�1=2; c2n�1=4) andu0, such thatj E�(z0)j�1 = M0,
wherez0 = u0 + iv0. Then, by (4.5), we have

j E�(z0)j�1 � 2c1 + �y + v0 < 2c1 + �y + 1 = M0;

which leads to a contradiction to the equality assumption. If Case 2 happens, then there existv0 2
[Ln�1=2; c2n�1=4) andu0, such thatj E�p(z0)j = v0, wherez0 = u0 + iv0. From (4.4) we have

j E�p(z0)j � v0CvM
2
0 [1 + c1M0 + (1 + c21)M

2
0 ] < v0:

This is also a contradiction to the equality assumption. The proof of Theorem 1.1 is complete for the
case0 < y < 1.
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Part (ii) of Theorem 1.1 :

Wheny = 1, Fp(x) andFy(x) satisfy the following conditions:

Fp(0) = Fy(0) ;

Z 1

0
xdFp(x) =

Z 1

0
xdFy(x) = 1 :

Thus ~Fp(x) =
R x
0 tdFp(t) and ~Fy(x) =

R x
0 tdFy(t) are two distributions and~Fy(x) satisfies the

Lipschitz condition,i.e. there exists a constantL > 0 for anyx andy such that

j ~Fy(x0)� ~Fy(x)j � Ljx0 � xj (4.9)

Therefore there is a constantc1 such that

1

v
sup
x

Z
juj�2�v

j ~Fy(x+ u)� ~Fy(x)j du � c1v

According to the definition of~Fp(x) and ~Fy(x) it follows for any� > 0 and everyt > 0 thatZ 1

4+�
jE ~Fp(x)� ~Fy(x)j dx = o(n�t)Z 1

4+�
Ej ~Fp(x)� ~Fy(x)j dx = o(n�t)

Let ~mp(z) and ~m(z) denote the Stieltjes transform of~Fp(x) and ~Fy(x) respectively , then

~mp(z) = 1 + zmp(z); ~m(z) = 1 + zm(z)

The proof of the Theorem 1.1, part (i) can be applied to the estimations of~� = k ~Fp(x)� ~Fy(x)k and
Ej ~mp(z)� ~m(z)jk. Therefore there is a constant~c > 0 , when1=2 � v � ~cn�1=2 it is followed that

sup
u

Ejz�p j < v; (4.10)

Ejzmp(z)� zm(z)j = Ej ~mp(z)� ~m(z)j < v: (4.11)

By (4.1) and Lemma 2.5, there is a constantc2, such that

� � �

Z
juj�25

jEmp(z)�m(z)j du+ c2
p
v

= �

Z
juj�25

jEzmp(z)� zm(z)j
jzj du+ c2

p
v

� �v

Z
juj�25

dup
u2 + v2

+ c2
p
v � �v log

c3
v

+ c2
p
v:

Since�v log c3
v <

p
v whenv is small enough, it is followed that

� < (c2 + 1)
p
v:

The proof of Theorem 1.1, part (ii) is complete. .
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4.2 Proof of Theorem 1.2

By Chebyshev inequality, it suffices to show that

E jjFp � Fy jj =
(
O(n�

2

5 ); for 0 < y < 1;

O(n�
2

9 ); for y = 1

Case0 < y < 1 : From (4.1), it follows that

E jjFp � Fy jj

� c

"Z A

�A
E jmp(z)�m(z)jdu+

1

v

Z
jxj>B

E jFp(x)� e(x)jdx+ v

#

� c

�Z A

�A
E jmp(z)� Emp(z)jdu+

Z A

�A
j Emp(z)�m(z)jdu

+
1

v

Z
jxj>B

j EFp(x)� e(x)jdx+ v

#
:

In the above argument, we have used the fact thatE jFp(x)�e(x)j = j EFp(x)�e(x)j for all jxj > B.
As in the proof of Theorem 1.1, we have shown that the last three terms on the right hand of the

above inequality are of orderO(v) for all Ln�1=2 � v < 1. Applying Cauchy-Schwarz inequality
and Remark 3.1, and the result� = O(n�1=2) proved in Theorem 1.1, we conclude thatZ A

�A
E jmp(z)� Emp(z)jdu �

Z A

�A
( E jmp(z)� Emp(z)j2)1=2du

� cn�1v�3=2 � v;

for some positive constantc and all cn�2=5 � v < 1. The proof of Theorem 1.2 in this case is
complete.

Casey = 1 : Similarly we have for allLn�1=2 � v < 1 ,

E jjFp � Fy jj � c

�Z A

�A
E jmp(z)� Emp(z)jdu+

p
v

�
:

Applying Cauchy-Schwarz inequality and Remark 3.1, and the result� = O(n�1=4) proved in The-
orem 1.1, we conclude thatZ A

�A
E jmp(z)� Emp(z)jdu �

Z A

�A
( E jmp(z)� Emp(z)j2)1=2du

� cn�1v�2v1=4 = cn�1v�7=4 � v1=2;

for some positive constantc and all cn�4=9 � v < 1. The proof of Theorem 1.2 in this case is
complete.
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4.3 Proof of Theorem 1.3

By Proposition 4.1 we have

kFp � Fyk � c

�Z A

�A
jmp(z)� Emp(z)jdu+

Z A

�A
j Emp(z)�m(z)jdu

+
1

v

Z
jxj�B

jFp(x)� e(x)jdx+ vy

#
: (4.12)

Yin, Bai and Krishnaiah (1988) has proved that under the assumption of Theorem 1.3, with probability
one, for all largen, Sp has no eigenvalues larger thanB or less than�B (recall thatB = 5). Thus,
with probability one, for all largen,Z

jxj�B
jFp(x)� e(x)jdx = 0:

Moreover in the proof of Theorem 1.1, we have proved that the second term on the right hand of (4.12)
has orderO(vy) for all Ln�1=2 � v < 1.

Case0 < y < 1 : Recall that in this case,vy = v. To complete the proof of Theorem 1.3, set
v = "n�2=5+� with some" > 0. We will show that

v�1
Z A

�A
jmp (z)� Emp (z)jdu! 0 a:s: (4.13)

Now, applying Lemma 3.5, we obtain for each� > 0,

P

�Z A

�A
jmp (z)� Emp (z)jdu � �v

�
� (v�)�2k(2A)2k�1

Z A

�A
E jmp (z)� Emp (z)j2k du

� ��2k(2A)2k
h
ck
�
n�2v�5

�ki
� c0k("�)

�2kn�5�k :

The right hand side of the above inequality is summable by choosingk such that5�k > 1. Thus,
(4.13) is proved and the proof of Theorem 1.3 is complete in this case.

Casey = 1 : The proof in this case is similar withvy =
p
v. By takingv = "n�4=9+� with

some" > 0, we have

v�1=2
Z A

�A
jmp (z)� Emp (z)jdu! 0 a:s: (4.14)

Acknowledgments.J. F. Yao thanks the National University of Singapore for the support during his
visit to its Department of Statistics and Applied Probability.

22



References

[1] Bai, Z.D. and Yin, Y. Q. (1986) . Limiting behavior of the norm of products of random matrices
and two problems of Geman-Hwang.Probab. Th. Rel. Field, 73, 555-569.

[2] Bai, Z. D., Yin, Y. Q. and Krishnaiah, P.K. (1987). On the limiting empirical distribution function
of the eigenvalues of a multivariate F-matrix.The Probability Theory and Its Applications, 32 ,
490-500.

[3] Bai, Z. D. (1993a). Convergence rate of expected spectral distributionsof large random matrices,
Part I. Wigner matrices.Ann. Probab.21, 625-648.

[4] Bai, Z. D. (1993b). Convergence rate of expected spectral distributionsof large random matrices,
Part II. Sample covariance matrices.Ann. Probab.21, 6649-672.

[5] Bai, Z. D. (1998). Methodologies in spectral analysis of large dimensional random matrices. A
review.Statistica Sinica9, 611-677

[6] Bai, Z. D., Miao, Baiqi and Tsay, Jhishen. (1997a). A note on the convergence rate of the spectral
distribution of large random matrices,Stat. & Probab. Let.34,95-101.

[7] Bai, Z. D., Miao, Baiqi and Tsay, Jhishen. (1997b). Convergence rate of the spectral distribution
of large Wigner matrices, (in preparation).

[8] Bai, Z. D., Miao, Baiqi and Tsay, Jhishen. (1998). Remarks on the convergence rate of the
spectral distribution of Wigner matrices,Ann. Appl. Probab.(to appear)

[9] Bai, Z. D. and Silverstein, J. W. (1998). No eigenvalues outside the support of the limiting
spectral distribution of large dimensional sample covariance matricesAnn. Probab.,26, No.1,
316-345.
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