
Using the Kohonen Algorithm for
Quick Initialization of Simple Competitive

Learning Algorithm

Eric de Bodt1, Marie Cottrell2, Michel Verleysen3

1 Université Catholique de Louvain, IAG-FIN, 1 pl. des Doyens,
B-1348 Louvain-la-Neuve, Belgium

and
Université Lille 2, ESA, Place Deliot, BP 381,

F-59020 Lille, France
2 Université Paris I, SAMOS-MATISSE, 90 rue de Tolbiac,

F-75634 Paris Cedex 13, France
3 Université Catholique de Louvain, DICE, 3 pl. du Levant,

B-1348 Louvain-la-Neuve, Belgium

Abstract. In a previous paper ([1], ESANN’97), we compared the Kohonen
algorithm (SOM) to Simple Competitive Learning Algorithm (SCL) when the
goal is to reconstruct an unknown density. We showed that for that purpose, the
SOM algorithm quickly provides an excellent approximation of the initial
density, when the frequencies of each class are taken into account to weight the
quantifiers of the classes. Another important property of the SOM is the well
known topology conservation, which implies that neighbor data are classified
into the same class (as usual) or into neighbor classes. In this paper, we study
another interesting property of the SOM algorithm, that holds for any fixed
number of quantifiers. We show that even we use those approaches only for
quantization, the SOM algorithm can be successfully used to accelerate in a
very large proportion the speed of convergence of the classical Simple
Competitive Learning Algorithm (SCL).

1. Simple Competitive Learning and Vector Quantization

The SOM algorithm (as defined by T.Kohonen in [4]), can be seen as an extension of
the Simple Competitive Learning Algorithm (SCL). Let us give the definition of the
SCL algorithm that we use here. It is defined in most textbooks [3].

Let Ω be the data space (with dimension d), endowed with a density probability
function f(x). The data are randomly drawn according to the density f(x) and are
denoted by x1, x2,…,xN,. The number of desired classes is a priori fixed to be n. The
quantifiers q1, q2, …, qn are randomly initialized. At each step t,

• a data xt+1 is randomly drawn according to the density f(x) ;
• the winning quantifier qi*(t) is determined by minimizing the classical Euclidean

norm :
|| xt+1 − qi*(t)|| = minj || xt+1 – qj || ;

• the quantifier qi*(t) is updated by qi*(t+1) = qi*(t) + ε(t) (xt+1 − qi*(t)).
where ε(t) is an adaptation parameter which satisfies the classical Robbins-Monro
conditions (Σ ε(t) = ∞ and Σ ε2(t) < ∞).

We observe that this definition is a particular case of the SOM algorithm, when the
neighborhood is reduced to zero. Sometimes it is called 0-neighbor Kohonen
algorithm. In the general case, for the SOM algorithm, the updating concerns not only
the winning quantifier, but also its neighbors.

The SCL algorithm is in fact the stochastic or on-line version of the Forgy algorithm
(also called moving centers algorithm, Lloyd's algorithm, LBG). See for example [7],
[8], [9]. In this version of the algorithm, the quantifiers are randomly initialized. At
each step t, the classes C1, C2, …, Cn are determined by putting in class Ci, the data
which are closer to qi than to any other quantifier qj. Then the mean values of each
class is computed and taken as new quantifiers, and so on. The Forgy algorithm works
off-line as a batch algorithm and at each step all the quantifiers are updated. It also
exists an intermediate version of the algorithm, frequently named the K-means method
(Mac Queen, [9]). In that case, at each step, only one data is randomly chosen, and the
winning quantifier is updated as the mean value of its class.

In the following, we will denote by BVQ (for batch) the Forgy algorithm.

It can be proven and it is well-known that BVQ (as well as any Vector Quantization
algorithm) minimizes the so-called distortion, which is exactly the mean quadratic
error:

∑∫
=

−=
n

i
C in

i

dxxfqxqqqf
1

2

210)(),,,,(Kξ (1)

estimated by

∑ ∑
= ∈

−=
n

i Cx
ijn

ij

qx
N

qqqf
1

2

210

1
),,,,(ˆ Kξ (2)

from the data x1, x2,…,xN.

Note that the stochastic SCL algorithm also minimizes this distortion, but only in
mean value.

Let us denote by q1*, q2*, …, qn* one set of quantifiers which minimizes the
distortion. Generally the minimum is not unique and depends on the initial values1. At
a minimum, each qi* is the gravity center of its class Ci, with respect to the density f.
In an exact form2,

1 To take this into account, we will realize all our comparison between algorithms
starting from the same initial points.
2These equations are equivalent to the BVQ algorithm.

∫
∫

=

i

i

C

C
i

dxxf

dxxfx
q

)(

)(
* (3)

estimated by

∑
∑

∈

∈
=

ij

ij

Cx

Cx j

i

x
q

1
*ˆ (4)

If we are able to exactly compute these values q*i, then it will be possible to precisely
evaluate the performances (speed of convergence) of the algorithm. This is the goal of
the next section.

2. Optimal values for the one-dimensional case, with known
density.

In one-dimensional cases (d = 1), if the set Ω is a real interval, and if the density f is
known and well-behaved, it is possible to directly compute the solutions q*i , starting
from a given set of increasing initial values, by a iterative equation.

As the initial values are ordered, the current values q1, q2, …, qn are still ordered. The
classes Ci (1 ≤ i ≤ n) are therefore intervals defined by Ci = [ai, bi], with ai = ½ (qi−1 +
qi) and bi = ½ (qi+1 + qi), for 1 < i <n, and a1 = inf (Ω), bn = sup (Ω).

Equations (3) or (4) have no explicit solutions, but it is possible to get the solutions
q*i, with any desired precision, using numerical iterations. Annex A presents the
recurrent equations for the densities f(x) = 2x, 3x2, e− x. Knowing the optimal location
points of the quantifiers, it will now be possible to study the speed at which any
Vector Quantization Algorithm converge towards them. For this, we will study the
Euclidean distance between the current values of (qi(t)) resulting from some VQ
algorithm and the solutions (q*i), as a function of the numbers of steps. We define the
mean quadratic error

D2(t) = D2(q(t),q*) = (1/n) Σ1≤ i ≤ n (qi(t) – q*i)²

which will be the error measure of the Vector Quantization algorithm that we
consider. Note that, as stated above, we carefully start from the same initial increasing
points for both VQ algorithm and deterministic computation of the (q*i).

In practical situations, the error measure D2(t) decreases to 0 very slowly when using
the SCL algorithm.

In Figures 1, 2, 3, we represent the variations of the error measure for both SCL and
SOM with 2 neighbors for the three examples of densities. We can see that the 2-
neighbors SOM decreases to the optimal values (q*i) much quicker than the SCL
algorithm, even if it finally converges to its own optimal points (that can be computed

using equations (3) or (4), where Ci = [ai, bi], and ai = ½ (qi−2 + qi) and bi = ½ (qi+2 +
qi)), which minimize the generalized distortion (extended to the neighbors) :

∑∫
=

∈

−=
n

i
C in

iVk
k

dxxfqxqqqf
1

2

212

)(

)(),,,,(
U

Kξ (5)

where V(i) is the set { i − 1, i, i + 1}.

0

0 , 2

0 , 4

0 , 6

0 , 8

1

1 , 2

1 8 1 1 6 1 2 4 1 3 2 1 4 0 1 4 8 1 5 6 1 6 4 1 7 2 1 8 0 1 8 8 1 9 6 1

0 V o i s

2 V o i s / 0 V o i s2 V o i s

i t e r a t i o n

E r r o r l e v e l

0

0,002

0,004

0,006

0,008

0,01

0,012

0,014

0,016

0,018

0,02

1 120 239 358 477 596 715 834 953

0Vois

2Vois

Error level

Iteration

0

0 , 2

0 , 4

0 , 6

0 , 8

1

1,2

1 8 9 177 2 6 5 3 5 3 441 5 2 9 617 705 7 9 3 881 9 6 9

0 V o i s

2 V o i s / 0 V o i s2Vois

Error leve l

I t e r a t i o n

Figure 1 (2x) Figure 2 (3x2) Figure 3 (exp (−− x))

See in Annex A some details about the calculations. See also in the Annex A a very
simple method to estimate in particular cases the so-called magnification factor ([4],
[10]). We have also to note that the increase of the total processing time of one
iteration when using the 2-neighbors SOM algorithm instead of the SCL algorithm is
significantly less than 1%.

So we propose in the next section to use a mixed algorithm, beginning by a SOM
algorithm and ending with a SCL algorithm.

3. Hybrid algorithm SOM/SCL

We propose now to use an hybrid VQ algorithm (denoted by KSCL), which consists
in an initial phase (a SOM algorithm with ν neighbors), followed by the classical
SCL. We compare the value of the error measure after the same number of iterations
for KSCL and SCL.

For example, let us fix a total number of iterations T, the initial ordered points q1(0),
q2(0), …, qn(0), a constant ε and various probability functions (f(x) = 2x on [0,1], 3x2

on [0,1], e− x on [0, +∞ [. Let us also consider the 2-neighbors SOM algorithm, ν = 2.

In Figures 4, 5, 6, we represent for the three probability densities that we took as
examples, the variations of the error measure for different KSCL algorithms. We
consider 4 cases where the 2-neighbors SOM algorithm is used during 0%, 30%;
60%, 90% of the total number of iterations T.

Run 0%

Run 30 %

Run 60 %

Run 90 %

Error Level

Iteration

Run 0%

Run 30 %

Run 60 %

Run 90 %

Error Level

Iteration

Run 0%

Run 30 %

Run 60 %

Run 90 %

Error Level

Iteration

Figure 4 (2x) Figure 5 (3x2) Figure 6 (exp (−− x))

We can observe that until some step, the 2-neighbors algorithm accelerates a great
deal the decrease of the error measure. In all cases, using too early the SCL algorithm
slows down the decrease. But even after the optimal point for substituting SCL to
SOM, the performances remain better than those of the pure SCL. It is also clear that
determining the optimal step for using SCL instead of SOM strongly depends on the
probability density. So in practical situations, it will be necessary to experimentally
adjust it.

However, in any cases, (we experiment it for other probability densities, real data and
several values of the number of neighbors ν), we can conclude that the SOM
algorithm can work as an efficient initialization of the SCL algorithm to accelerate
the convergence and improve the performances.

4. Conclusion

This fact is not surprising and was conjectured by some authors, because the
neighbors act as a noise with respect to the algorithm without neighbor. In fact, there
are a lot of algorithms in which the noise plays the role of a temperature in the same
way as in Simulated Annealing. This temperature is positive at the beginning to help
avoiding local minima and decreases to 0 after realizing a first rough optimization.

5. Acknowledgements

The authors are grateful to Jean-Claude Fort and Gil Pagès for fruitful discussions
about the topics of this paper.

References

[1] de Bodt E., Verleysen M., Cottrell M., Kohonen maps versus vector quantization
for data analysis, ESANN’97, M.Verleysen Ed., D Facto, Bruxelles, 211-218,
1997.

[2] Gersho A., Asymptotically optimal block quantization, IEEE Trans. Inf. Theory,
25, 373-380, 1979.

[3] Hertz J., Krogh A., Palmer R., Introduction to the Theory of Neural Computation,
Santa Fe Institute, 1991.

[4] Kohonen T., Self-organizing maps, Springer, Berlin, 1995.
[5] Kohonen T., Computation of VQ and SOM Point Densities Using the Calculus of

Variations, submitted to Neural Computation, 1998.
[6] Kohonen T., Private Communication, 1998.
[7] Linde Y., Buzo A., Gray R.M., An algorithm for vector quantizer design, IEEE

Transactions on Communications, vol. COM-28, no. 1, January 1980.
[8] Lloyd S.P., Least squares quantization in PCM, IEEE Transactions on

Information Theory, vol. IT-28, no. 2, pp. 129-149, March 1982.
[9] MacQueen J. Some methods for classification and analysis of multivariate

observations, Proc. Of the Fifth Berkeley Symposium on Math., Stat. and Prob.,
vol. 1, pp. 281-296, 1967.

[10] Ritter H. and Shulten K., On the Stationary State of Kohonen’s Self-Organizing
Sensory Mapping, Biol. Cybern., 54, 99-106, 1986.

[11] Ritter,H., Asymptotic level density for a class of vector quantization processes,
IEEE Trans. on Neural Networks, 2, 173-175, 1991.

Annex A

We give below in Table 1, for each of the three examples of probability densities, the
distribution function and the recurrent equation (3) which provides the exact
calculation of the optimal values (q*i).
In fact, this exact computation can also be applied to evaluate the so-called
magnification factor. Many authors (Gersho [2], Ritter [10], Kohonen [5]) give
arguments that show that the vector quantization which leads to a minimization of the
distortion ξ0 corresponds to a discrete distribution which converges asymptotically
(when n goes to infinity) to a distribution with density :

α
α)()(xfAxg = (6)

where A is a constant and α = 1/3, in the one-dimensional case.
So for the referred densities, (and for all the densities f(x) = (p+1) xp on [0,1], with p >
−1), it is possible to write down the theoretical probability function gα, its distribution
function Gα, and the relation which provides an estimation method for the exponent
α.

This relation is based on the following remark : the theoretical distribution function

Gα can be estimated by the empirical distribution function αĜ defined by

ni
n

i
qG i ≤≤= 1for ,)(ˆ

α

So the optimal values (q*i) do verify this relation for each i, and this leads to a very
accurate estimation of α, for the three studied densities, using a simple linear
regression as written down in the last column. All these regression models are
satisfied with a correlation coefficient equal to 1. This method to estimate the
exponent α is very accurate, because it uses the exact computation of the optimal
quantifiers (q*i) and there is no noise as in the stochastic computation of these points.

See in Table 2, the estimations that we get for different numbers of quantifiers (n =
12, 25, 50, 100, 200, 500).

This method can also be used to estimate the exponent α for the SOM with 2 or more
neighbors, as computed by Ritter in [11]. See for example Kohonen [6] who uses
some similar method. The generalization is very easy, it is sufficient to use the
corrected values for ai and bi. For example for 2 neighbors, ai = ½ (qi-2 + qi), bi = ½
(qi+2 + qi) and we get approximately α = 0.6, as derived by Ritter [11].

However, it is important to take into account that all these computations (as well as
the theoretical arguments in Gersho [2], Ritter [10, 11], or Kohonen [5, 6]) rely on the
assumption that the limit distribution of the quantifiers (q*i) is unique. But in fact, this
result is not evident, and very difficult to prove. What classes of probability
distributions satisfy the uniqueness is an open question so far.

Density f Distribution
Function

a0 b0 qi Density gα Gα Relation

(p+1)xp on [0,1]
(p > − 1)

xp+1 0 1

11

22

2

1
++

++

−
−

+
+

=
p
i

p
i

p
i

p
i

i ab

ab

p

p
q

(pα+1)xpα xpα+1 ln (i/n) = (pα+1) ln qi

2x on [0,1] x2 0 1

22

33

3

2

ii

ii
i ab

ab
q

−
−

=
(α+1)xα xα+1 ln (i/n) = (α+1) ln qi

3x2 on [0,1] x3 0 1

33

44

4

3

ii

ii
i ab

ab
q

−
−

=
(2α+1)x2α x2α+1 ln (i/n) = (2α+1) ln qi

e-x on [0,+∞[1−x-1-ε 0 +∞

ii

iiii

ba

bb
i

aa
i

i
ee

eebeea
q

−−

−−−−

−
−−+

=
α e−αx 1 − e−αx −ln (1−i/n) = (1−2α) ln qi

Table 1 (ai = ½ (qi−1 + qi) and bi = ½ (qi+1 + qi)).

Density n=12 n=25 n=50 n=100 n=200 n=500
2x on [0,1] 0.20 0.25 0.29 0.31 0.32 0.33
3x2 on [0,1] 0.26 0.30 0.31 0.32 0.33 0.33
e-x on [0,+∞[0.43 0.39 0.36 0.34 0.34 0.33

Table 2

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

1 85 169 253 337 421 505 589 673 757 841 925

Run 10 %
Run 20 %
Run 30 %
Run 40 %
Run 50 %
Run 60 %
Run 70 %
Run 80 %
Run 90 %
Run 100 %

Loi 2x

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

1 132 263 394 525 656 787 918

Run 10 %
Run 20 %
Run 30 %
Run 40 %
Run 50 %
Run 60 %
Run 70 %
Run 80 %
Run 90 %
Run 100 %

3x2

Exp(-x)

0

50

100

150

200

250

300

350

400

450

500

1 142 283 424 565 706 847 988

Run 10 %
Run 20 %
Run 30 %
Run 40 %
Run 50 %
Run 60 %
Run 70 %
Run 80 %
Run 90 %
Run 100 %

