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Abstract. In this paper, we propose a generic non-linear approach for time
series forecasting. The main feature of this approach is the use of a simple
statistical forecasting in small regions of an input space adequately chosen and
quantized. The partition of the space is achieved by the Kohonen algorithm.
The method is then applied to a widely known time-series from the SantaFe
competition, and the results are compared with the best ones published for this
series.

1. Introduction

The goal of the time-series forecasting method presented in this paper is to capture the
dynamics of a process observed through a set of data to simulate its future behaviour.
The main feature of this approach is the use of a simple statistical forecasting in small
regions of an input space adequately chosen and quantized. The model is local,
contrasting to most common prediction methods that try to globally forecast the time-
series.

In the second section of the paper, we present in a few words the Kohonen algorithm,
used here as a vector quantization algorithm for the discretisation of the process
dynamics. In the third section, we describe the proposed method. In the fourth one,
we show its application to a widely used time-series coming from the Santa Fe
competition.

2. The Kohonen self-organising map

The Kohonen map [6, 1, 2] is a well-known unsupervised learning algorithm which
produces a map composed by a fixed number of units. A physical neighbourhood



relation between the units is defined and each unit is characterised by a parameter
vector of the same dimension as the input space. After learning, each unit represents a
group of individuals with similar features (this group is named Voronoi region of the
unit). The correspondence between the features and the units approximately respects
the input space topology: similar features correspond to the same unit or the
neighbouring units. The final map is said to be a self-organised map which preserves
the topology of the input space.

The Kohonen self-organising map is thus a vector quantization (VQ) method which
has the supplementary property (compared to other VQ methods) that its respects the
topology.  Strictly speaking, we use only the VQ property of the Kohonen map in the
following forecasting method.  Nevertheless, we use this algorithm instead of a more
conventional VQ method because of two reasons: first, the Kohonen algorithm seems
to be faster than more conventional methods for the same quality of results (but the
generality of this statement and theoretical justifications remain open questions).  But
secondly, what is more important for us, is that the parameter vectors resulting from
the Kohonen algorithm are ordered, what greatly facilitates their interpretation (see
for example [9]).

3. Forecasting Time Series

To forecast a time-series, we have to fit the corresponding process that is observed
through a set of data. In this paper, we limit the problem to one-dimensional time-
series (i.e. series with a scalar output). The initial data vector, denoted D, is therefore
of length n, where n is the number of observations in time.

The first step of our approach is, as for a lot of classical time-series analysis methods,
to choose a lagging order.  The initial data vector, D, is then modified to incorporate
the vector of the observed variable as well as the past realisations of this one. The new
data matrix, P, is of order [n-λ, λ], where λ is the lagging order. Rows of P are
denoted xt = { xt,1 , … , xt,λ }, where t is the time index.

The P matrix is then decomposed into a number of homogeneous clusters, using the
Kohonen algorithm (a one dimensional Kohonen map is used). To each unit of the
Kohonen map is associated, after learning, a number of individuals for which this unit
is the winning one. The clusters are formed. For each unit, the parameter vector
(called here «profile» because it represents the mean of the attached time slots of
length λ in the series) ix  is calculated. As λ, the choice of the number of clusters will
depends on the features of the analysed process and results from the quality of
learning measured on validation sets. The observation of the homogeneity of the
clusters (for example, the Fisher statistics) obtained after learning is a good indicator.

For each row xt of the P matrix, the associated deformation is then computed. It is
noted yt and is computed according to yt = xt+1- xt. On this basis, for each cluster of



the P matrix, a Pi matrix, composed by the yt corresponding to the xt of the cluster i, is
formed.

For each Pi matrix, as for the P matrix, decomposition into a number of homogeneous
clusters is realised, once again using the Kohonen algorithm (a one-dimensional
Kohonen map is also used). The mean profiles of the formed clusters are then
determined and denoted by jy .

The last step to characterise the analysed process is to establish the empirical
frequencies of jy  conditionally to ix  by counting. They are denoted by P( jy | ix ).

Once this characterisation procedure using two stages of Kohonen maps is completed,
the forecasting procedure takes the following form:

- choice of a starting point xt (for example, the initial individual in the P matrix);
- determination of the winning ix  using ArgMini (|| xt - ix  ||);

- picking at random an iy  according to the conditional probabilities P( jy | ix );

- computation of x t+1 by x t + jy  ;

- iteration of the procedure for simulating the dynamics of the process on a
specific time horizon;

- the procedure will be iterated and the results will be averaged.

4. Application to Santa Fe Data

The objective of this section is to test the presented method on a widely recognised
benchmark, the data series D from the Santa Fe competition [8].

The characteristics of this series are:
- relatively high-dimensional dynamics;
- long data sets, (100,000 points);
- no background information;
- quite stationary.

The lagging order of this series reported in the literature (for non-linear forecasting
methods) [8] is about 20. Therefore, we are using the last 20 values of the series to
predict the next value. The P matrix is of order [99980, 20].

The number of clusters in the Kohonen algorithm is chosen through the observation of
the homogeneity of the clusters, by the Fisher statistics and visual inspection of
profiles. In this case, it will be included between 200 and 300.

For each row x t of the P matrix, the associated deformation is then computed. On this
basis, for each cluster of the P matrix, a Pi matrix is formed. For each Pi matrix,
decomposition into a number of homogeneous clusters is realised again through the



Kohonen algorithm. The number of clusters is chosen according to the minimum
quantization error on a validation set, not used for training. The optimal number of
clusters in the deformation space is between 3 and 10.

Hence, we predicted the 15 and 30 next values of the series and compared them both
with the true ones and with the best results of the Santa Fe’s competitors.

The evaluation is measured by the normalised mean squared error:
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where k = 1 … N holds for the N (here 15 or 30) values in the targets set T, and

meanT and 2
Tσ̂  denote the sample average and sample variance of the observed values

(targets) in T. A value of NMSE = 1 corresponds to simply predicting the average.

The series predicted with 200 clusters in the input space and 10 clusters in each
deformation space is illustrated in Figure 1. For these parameters, we obtain
NMSE(15) = 0.4957 and NMSE(30) = 0.6384.

Fig.1: comparison between the true (continuous line) and the predicted value (dash line).

To improve the accuracy of the forecast, we tried to learn the dynamics of the series
on the last 10,000 points instead of the whole 100,000 points set.  The results are
illustrated in Figure 2 and summarised in Table 1.

Clusters in input space / cl. in deformations spaces NMSE(15) NMSE(30)
100 / 5 0.5244 0.6134
200 / 3 0.3834 0.5542
200 / 5 0.3921 0.5342
250 / 4 0.5542 0.7135

Table 1: summary of the main results.
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Fig.2: (a) 100 clusters in the input space and 5 in the deformations spaces (b) 200 clusters in
the input space and 3 in the deformations spaces (c) 200 clusters in the input space and 5 in
the deformations spaces (d) 250 clusters in the input space and 4 in the deformations spaces.

Table 2 shows a comparison between our method (indicated as «Kohonen» in the
table) and the best results reported for this series [8].

Method Type NMSE(15) NMSE(30)
conn …-30-30-1 0.086 0.57
tree k-d tree; AIC 1.3 1.4
conn Recurrent, 4-4c-1 6.4 3.2
conn 1-30-30-1; lags 20,5,5 7.1 3.4
linear 36 AR(8), last 4k pts. 4.8 5.0
conn Feedforward 17. 9.5

Kohonen 200 / 5 clusters 0.39 0.54

Table 2: comparison between the main methods.

It must be mentioned that the first method listed in Table 2 (which remains the best
one) implies a computationally extremely heavy learning on thousands of perceptrons,
while the other methods, including our proposal, remain computationally reasonable.

Similar results have been obtained with other standard benchmarks.



5. Conclusion

In the proposed method for time series forecasting, an adequately chosen space is
divided into clusters, in order to apply a simple prediction methods on each of these
clusters. The division (quantization) has been realised by the Kohonen algorithm. The
proposed algorithm gives one of the best forecasts reported for this series in the
literature.

The power of the method is linked to an adequate choice of its three main parameters:
the lagging order λ, the number of clusters in the input space and the number of
clusters in each deformation space. Once the lagging order is chosen as in any other
forecasting method (application context, correlation analysis,…), the two other
parameters are easily adjusted by using learning validation sets.
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