Conference in honour of Magda Peligrad Finkelstein's theorem for intermittent maps Jérôme Dedecker, Université Paris 6, LSTA Paris, june 2010.

 $(X_i)_{i\in\mathbb{Z}}$: stationary sequence of real valued random variables. Let $\mathcal{M}_0 = \sigma(X_i, i \leq 0)$. Let F be the d. f. of X_i and $F_{X_k|\mathcal{M}_0}$ be the conditional d. f. of X_k given \mathcal{M}_0 . Let $G_k = F_{X_k|\mathcal{M}_0} - F$. Define

$$\begin{split} \phi_{1,X}(k) &= \sup_{t \in \mathbb{R}} \|F_{X_k}|_{\mathcal{M}_0}(t) - F(t)\|_{\infty}, \\ \phi_{2,X}(k) &= \phi_{1,X}(k) \lor \sup_{i > j \ge k} \sup_{t,s \in \mathbb{R}} \|G_i(t)G_j(s) - \mathbb{E}(G_i(t)G_j(s))\|_{\infty}, \\ \alpha_{1,X}(k) &= \sup_{t \in \mathbb{R}} \|F_{X_k}|_{\mathcal{M}_0}(t) - F(t)\|_1, \\ \alpha_{2,X}(k) &= \alpha_{1,X}(k) \lor \sup_{i > j \ge k} \sup_{t,s \in \mathbb{R}} \|G_i(t)G_j(s) - \mathbb{E}(G_i(t)G_j(s))\|_1, \\ \beta_{1,X}(k) &= \|\sup_{t \in \mathbb{R}} |F_{X_k}|_{\mathcal{M}_0}(t) - F(t)|\|_1, \\ \beta_{2,X}(k) &= \beta_{1,X}(k) \lor \sup_{i > j \ge k} \|\sup_{t,s \in \mathbb{R}} |G_i(t)G_j(s) - \mathbb{E}(G_i(t)G_j(s))|\|_1. \end{split}$$

Iterated transformations and Markov chains

• Let θ be a map from [0,1] to itself, preserving a probability ν on [0,1]. The sequence $(\theta^i)_{i\geq 0}$ of random variables from $([0,1],\nu)$ to [0,1] is strictly stationary.

Iterated transformations and Markov chains

- Let θ be a map from [0, 1] to itself, preserving a probability ν on [0, 1]. The sequence (θⁱ)_{i≥0} of random variables from ([0, 1], ν) to [0, 1] is strictly stationary.
- Let K be the Perron-Frobenius operator of θ: for any functions h, f in L²([0,1], ν),

 $\nu(K(h) \cdot f) = \nu(h \cdot f \circ \theta) \,.$

Iterated transformations and Markov chains

- Let θ be a map from [0, 1] to itself, preserving a probability ν on [0, 1]. The sequence (θⁱ)_{i≥0} of random variables from ([0, 1], ν) to [0, 1] is strictly stationary.
- Let K be the Perron-Frobenius operator of θ : for any functions h, f in $\mathbb{L}^2([0,1], \nu)$,

$$\nu(K(h) \cdot f) = \nu(h \cdot f \circ \theta) \,.$$

It is easy to see that (θ⁰, θ¹,..., θⁿ) is distributed as (X_n, X_{n-1},..., X₀), where (X_i)_{i≥0} is a stationary Markov chain with invariant measure ν and transition kernel K.

• Assume that θ is uniformly expanding with an unique a. c. invariant probability measure whose density *h* is such that

$$\frac{1}{h}\mathbf{1}_{h>0}$$
 is a BV function.

Then, using the contraction properties of K in the space of BV functions (see for instance Broise (1996)), we have proved with C. Prieur (2005) that

$$\phi_{2,X}(n) \leq C\rho^n$$
, with $\rho < 1$.

• Assume that θ is uniformly expanding with an unique a. c. invariant probability measure whose density *h* is such that

$$\frac{1}{h}$$
1_{*h*>0} is a BV function.

Then, using the contraction properties of K in the space of BV functions (see for instance Broise (1996)), we have proved with C. Prieur (2005) that

$$\phi_{2,X}(n) \leq C\rho^n$$
, with $\rho < 1$.

- Standard examples of uniformly expanding maps are
 - the β -transformations: $\theta(x) = \beta x [\beta x]$, pour $\beta > 1$.

• the Gauss map: $\theta(x) = x^{-1} - [x^{-1}]$.

The graph of an intermittent map is as follows:

Behavior around zero: $\theta'(0) = 1$ and $\theta''(x) \sim cx^{\gamma-1}$ when $x \to 0$, for some c > 0 and $0 < \gamma < 1$.

• An example of intermittent map is the LSV map:

for
$$0 < \gamma < 1$$
, $\theta(x) = \begin{cases} x(1+2^{\gamma}x^{\gamma}) & \text{if } x \in [0, 1/2[\\ 2x-1 & \text{if } x \in [1/2, 1] \end{cases}$

• An example of intermittent map is the LSV map:

for
$$0 < \gamma < 1$$
, $\theta(x) = \begin{cases} x(1+2^{\gamma}x^{\gamma}) & \text{if } x \in [0, 1/2[\\ 2x-1 & \text{if } x \in [1/2, 1] \end{cases}$

Starting from the properties of *K* in the space of Hölder functions (cf. Maume-Deschamps (2001)), we have proved with C. Prieur (2009) that, for any ε > 0,

$$\frac{A}{n^{\frac{1-\gamma}{\gamma}}} \le \beta_{2,X}(n) \le \frac{B(\varepsilon)}{n^{\frac{1-\gamma}{\gamma}-\varepsilon}}.$$

• An example of intermittent map is the LSV map:

for
$$0 < \gamma < 1$$
, $\theta(x) = \begin{cases} x(1+2^{\gamma}x^{\gamma}) & \text{if } x \in [0, 1/2[\\ 2x-1 & \text{if } x \in [1/2, 1] \end{cases}$

 Starting from the properties of *K* in the space of Hölder functions (cf. Maume-Deschamps (2001)), we have proved with C. Prieur (2009) that, for any ε > 0,

$$\frac{A}{n^{\frac{1-\gamma}{\gamma}}} \le \beta_{2,X}(n) \le \frac{B(\varepsilon)}{n^{\frac{1-\gamma}{\gamma}-\varepsilon}}$$

• With S. Gouëzel and F. Merlevède (2008), we have proved that

$$\frac{A}{n^{\frac{1-\gamma}{\gamma}}} \le \alpha_{2,X}(n) \le \frac{B}{n^{\frac{1-\gamma}{\gamma}}}.$$

CLT for uniformly expanding maps

• Let $C(M, p, \nu)$ be the closure of the convex hull of the set of functions f which are monotonic on some open interval of]0, 1[and 0 elsewhere, and such that $\nu(|f|^p) \leq M$.

CLT for uniformly expanding maps

- Let C(M, p, ν) be the closure of the convex hull of the set of functions f which are monotonic on some open interval of]0,1[and 0 elsewhere, and such that ν(|f|^p) ≤ M.
- Let $S_n(f) = \sum_{i=1}^n (f \circ \theta^i \nu(f))$. If θ is uniformly expanding, and if $f \in \mathcal{C}(M, 2, \nu)$, then, on $([0, 1], \nu)$,

$$\frac{1}{\sqrt{n}}S_n(f) \quad \xrightarrow[n \to \infty]{\mathcal{L}} \mathcal{N}(0, \sigma^2(f)),$$

where

$$\sigma^2(f) = \operatorname{Var}_{\nu}(f) + 2\sum_{k>0} \operatorname{Cov}_{\nu}(f, f \circ \theta^k) \,.$$

CLT for uniformly expanding maps

- Let C(M, p, ν) be the closure of the convex hull of the set of functions f which are monotonic on some open interval of]0,1[and 0 elsewhere, and such that ν(|f|^p) ≤ M.
- Let $S_n(f) = \sum_{i=1}^n (f \circ \theta^i \nu(f))$. If θ is uniformly expanding, and if $f \in \mathcal{C}(M, 2, \nu)$, then, on $([0, 1], \nu)$,

$$\frac{1}{\sqrt{n}}S_n(f) \quad \xrightarrow[n \to \infty]{\mathcal{L}} \mathcal{N}(0, \sigma^2(f)),$$

where

$$\sigma^2(f) = \operatorname{Var}_{\nu}(f) + 2\sum_{k>0} \operatorname{Cov}_{\nu}(f, f \circ \theta^k) \,.$$

• In particular, the CLT holds if f is monotonic on]0,1[, and $\int f^2(t)dt < \infty$.

CLT for intermittent maps

• Let *H* be a tail function. Let $\mathcal{F}(H, \nu)$ be the closure of the convex hull of the set of functions *f* which are monotonic on some open interval of]0,1[and 0 elsewhere, and such that $\nu(|f| > t) \leq H(t)$.

CLT for intermittent maps

- Let *H* be a tail function. Let *F*(*H*, *ν*) be the closure of the convex hull of the set of functions *f* which are monotonic on some open interval of]0, 1[and 0 elsewhere, and such that *ν*(|*f*| > *t*) ≤ *H*(*t*).
- Let θ be intermittent, with $\gamma < 1/2$. With S. Gouëzel and F. Merlevède (2008), we proved the CLT for $f \in \mathcal{F}(H, \nu)$, as soon as

$$\int_0^\infty x(H(x))^{\frac{1-2\gamma}{1-\gamma}} dx < \infty \,.$$

CLT for intermittent maps

- Let *H* be a tail function. Let *F*(*H*, *ν*) be the closure of the convex hull of the set of functions *f* which are monotonic on some open interval of]0, 1[and 0 elsewhere, and such that *ν*(|*f*| > *t*) ≤ *H*(*t*).
- Let θ be intermittent, with $\gamma < 1/2$. With S. Gouëzel and F. Merlevède (2008), we proved the CLT for $f \in \mathcal{F}(H, \nu)$, as soon as

$$\int_0^\infty x(H(x))^{\frac{1-2\gamma}{1-\gamma}} dx < \infty \,.$$

- - if $f \downarrow$ on]0,1] and $f(x) \leq Cx^{-a}$, the CLT holds if $a < \frac{1}{2} \gamma$. The cut is optimal: see Gouëzel (2004).
 - If $f\uparrow$ on [0,1[and $f(x)\leq C(1-x)^{-a},$ the CLT holds if

$$a < \frac{1}{2} - \frac{\gamma}{2(1-\gamma)} \,.$$

Proof of the CLT

• The CLT for $S_n(f)$ holds as soon as

$$\sum_{k>0} \|(f-\nu(f))(K^k(f)-\nu(f))\|_{1,\nu} < \infty.$$

Proof of the CLT

• The CLT for $S_n(f)$ holds as soon as

$$\sum_{k>0} \|(f-\nu(f))(K^k(f)-\nu(f))\|_{1,\nu} < \infty.$$

• If $f \in \mathcal{F}(H,\nu)$, then

$$\|(f - \nu(f))(K^k(f) - \nu(f))\|_{1,\nu} \le C \int_0^{\alpha_{1,X}(k)} Q^2(u) du,$$

where Q is the cadlag inverse of H.

Proof of the CLT

• The CLT for $S_n(f)$ holds as soon as

$$\sum_{k>0} \|(f-\nu(f))(K^k(f)-\nu(f))\|_{1,\nu} < \infty.$$

• If $f \in \mathcal{F}(H,\nu)$, then

$$\|(f - \nu(f))(K^k(f) - \nu(f))\|_{1,\nu} \le C \int_0^{\alpha_{1,X}(k)} Q^2(u) du,$$

where Q is the cadlag inverse of H.

• If $\alpha_{1,X}(n) = O(n^{(\gamma-1)/\gamma})$, then

 $\sum_{k>0}\int_0^{\alpha_{1,X}(k)}Q^2(u)du<\infty\quad\text{as soon as}\quad\int_0^\infty x(H(x))^{\frac{1-2\gamma}{1-\gamma}}dx<\infty\,.$

• Let $F_{n,\theta}(t) = n^{-1} \sum_{i=1}^{n} \mathbf{1}_{\theta^i \leq t}$ and F be the d. f. of ν .

- Let $F_{n,\theta}(t) = n^{-1} \sum_{i=1}^{n} \mathbf{1}_{\theta^{i} \leq t}$ and F be the d. f. of ν .
- If $\theta(x) = 2x [2x]$ or if θ is the Gauss map, the ECLT follows from a general result for functions of ϕ -mixing sequences given in Billingsley (1968): $\sqrt{n}(F_{n,\theta} - F)$ converges in distribution to a Gaussian process *G* with covariance:

$$\operatorname{Cov}(G(s), G(t)) = \sum_{k \ge 1} \operatorname{Cov}_{\nu}(\mathbf{1}_{\theta \le t}, \mathbf{1}_{\theta^k \le s}) + \sum_{k > 1} \operatorname{Cov}_{\nu}(\mathbf{1}_{\theta \le s}, \mathbf{1}_{\theta^k \le t}).$$

- Let $F_{n,\theta}(t) = n^{-1} \sum_{i=1}^{n} \mathbf{1}_{\theta^{i} \leq t}$ and F be the d. f. of ν .
- If $\theta(x) = 2x [2x]$ or if θ is the Gauss map, the ECLT follows from a general result for functions of ϕ -mixing sequences given in Billingsley (1968): $\sqrt{n}(F_{n,\theta} - F)$ converges in distribution to a Gaussian process *G* with covariance:

$$\operatorname{Cov}(G(s), G(t)) = \sum_{k \ge 1} \operatorname{Cov}_{\nu}(\mathbf{1}_{\theta \le t}, \mathbf{1}_{\theta^k \le s}) + \sum_{k > 1} \operatorname{Cov}_{\nu}(\mathbf{1}_{\theta \le s}, \mathbf{1}_{\theta^k \le t}).$$

 If θ is uniformly expanding with a finite partition, Hofbauer and Keller (1982) showed that θⁱ is a function of β-mixing sequences.

- Let $F_{n,\theta}(t) = n^{-1} \sum_{i=1}^{n} \mathbf{1}_{\theta^{i} \leq t}$ and F be the d. f. of ν .
- If $\theta(x) = 2x [2x]$ or if θ is the Gauss map, the ECLT follows from a general result for functions of ϕ -mixing sequences given in Billingsley (1968): $\sqrt{n}(F_{n,\theta} - F)$ converges in distribution to a Gaussian process *G* with covariance:

$$\operatorname{Cov}(G(s), G(t)) = \sum_{k \ge 1} \operatorname{Cov}_{\nu}(\mathbf{1}_{\theta \le t}, \mathbf{1}_{\theta^k \le s}) + \sum_{k > 1} \operatorname{Cov}_{\nu}(\mathbf{1}_{\theta \le s}, \mathbf{1}_{\theta^k \le t}).$$

- If θ is uniformly expanding with a finite partition, Hofbauer and Keller (1982) showed that θⁱ is a function of β-mixing sequences.
- The ECLT follows from a general result for functions of β -mixing sequences given in Borovkova, Burton and Dehling (2001).

An ECLT for β -dependent sequences.

• Let $(X_i)_{i\in\mathbb{Z}}$ be stationary, and $F_n(t) = n^{-1} \sum_{k=1}^n \mathbf{1}_{X_k \leq t}$.

An ECLT for β -dependent sequences.

- Let $(X_i)_{i\in\mathbb{Z}}$ be stationary, and $F_n(t) = n^{-1} \sum_{k=1}^n \mathbf{1}_{X_k \leq t}$.
- If $\beta_{2,X}(k) = O(1/k^{1+\varepsilon})$, and if F_X is continuous then $\sqrt{n}(F_n F_X)$ converge in distribution in the space D of cadlag functions to a gaussian process G with covariance

$$\Gamma(s,t) = \sum_{k \ge 0} \operatorname{Cov}(\mathbf{1}_{X_0 \le t}, \mathbf{1}_{X_k \le s}) + \sum_{k > 0} \operatorname{Cov}(\mathbf{1}_{X_0 \le s}, \mathbf{1}_{X_k \le t}).$$
(1)

An ECLT for β -dependent sequences.

- Let $(X_i)_{i\in\mathbb{Z}}$ be stationary, and $F_n(t) = n^{-1}\sum_{k=1}^n \mathbf{1}_{X_k \leq t}$.
- If $\beta_{2,X}(k) = O(1/k^{1+\varepsilon})$, and if F_X is continuous then $\sqrt{n}(F_n F_X)$ converge in distribution in the space D of cadlag functions to a gaussian process G with covariance

$$\Gamma(s,t) = \sum_{k\geq 0} \operatorname{Cov}(\mathbf{1}_{X_0\leq t}, \mathbf{1}_{X_k\leq s}) + \sum_{k>0} \operatorname{Cov}(\mathbf{1}_{X_0\leq s}, \mathbf{1}_{X_k\leq t}).$$
(1)

• This result applies to uniformly expanding maps without the assumption of finite partition.

Empirical CLT for intermittent maps

• If θ is an intermittent map with $\gamma < 1/2$, then the ECLT holds.

Empirical CLT for intermittent maps

- If θ is an intermittent map with $\gamma < 1/2$, then the ECLT holds.
- This result is no longer valid if $\gamma = 1/2$. For instance, if θ is the map

$$\theta(x) = \begin{cases} x(1+\sqrt{2x}) & \text{if } x \in [0, 1/2[\\ 2x-1 & \text{if } x \in [1/2, 1] \end{cases}$$

one can prove that the finite dimensional marginals of the process $(n/\ln(n))^{1/2}(F_{n,\theta} - F)$ converges in distribution to those of the degenerated Gaussian process *G* defined by:

for any $t \in [0, 1]$, $G(t) = \sqrt{h(1/2)}(1 - F(t))\mathbf{1}_{t \neq 0} Z$,

where Z is a standard normal and h is the density of ν .

• For the fidi convergence, let $t_1 < t_2 < \cdots < t_k$ and (a_1, \ldots, a_k) in \mathbb{R}^k . Let $Y_i = a_1 \mathbf{1}_{X_i \leq t_1} + \cdots + a_k \mathbf{1}_{X_i \leq t_k}$ and $S_n(Y) = Y_1 + \cdots + Y_n$.

- For the fidi convergence, let $t_1 < t_2 < \cdots < t_k$ and (a_1, \ldots, a_k) in \mathbb{R}^k . Let $Y_i = a_1 \mathbf{1}_{X_i \leq t_1} + \cdots + a_k \mathbf{1}_{X_i \leq t_k}$ and $S_n(Y) = Y_1 + \cdots + Y_n$.
- According to Gordin CLT (1973) for stationary ergodic sequences of bounded r.v.'s, $n^{-1/2}(S_n(Y) \mathbb{E}(S_n(Y)))$ converges to a normal law provided that

$$\sum_{i>0} \|\mathbb{E}(Y_i|\mathcal{M}_0) - \mathbb{E}(Y_i)\|_1 < \infty.$$

- For the fidi convergence, let $t_1 < t_2 < \cdots < t_k$ and (a_1, \ldots, a_k) in \mathbb{R}^k . Let $Y_i = a_1 \mathbf{1}_{X_i \leq t_1} + \cdots + a_k \mathbf{1}_{X_i \leq t_k}$ and $S_n(Y) = Y_1 + \cdots + Y_n$.
- According to Gordin CLT (1973) for stationary ergodic sequences of bounded r.v.'s, $n^{-1/2}(S_n(Y) \mathbb{E}(S_n(Y)))$ converges to a normal law provided that

$$\sum_{i>0} \|\mathbb{E}(Y_i|\mathcal{M}_0) - \mathbb{E}(Y_i)\|_1 < \infty.$$

• Clearly $\|\mathbb{E}(Y_i|\mathcal{M}_0) - \mathbb{E}(Y_i)\|_1 \le (|a_1| + \dots + |a_k|)\alpha_{1,X}(i)$, so that the fidi convergence holds as soon as $\sum_{i>0} \alpha_{1,X}(i) < \infty$.

- For the fidi convergence, let $t_1 < t_2 < \cdots < t_k$ and (a_1, \ldots, a_k) in \mathbb{R}^k . Let $Y_i = a_1 \mathbf{1}_{X_i \leq t_1} + \cdots + a_k \mathbf{1}_{X_i \leq t_k}$ and $S_n(Y) = Y_1 + \cdots + Y_n$.
- According to Gordin CLT (1973) for stationary ergodic sequences of bounded r.v.'s, $n^{-1/2}(S_n(Y) \mathbb{E}(S_n(Y)))$ converges to a normal law provided that

$$\sum_{i>0} \|\mathbb{E}(Y_i|\mathcal{M}_0) - \mathbb{E}(Y_i)\|_1 < \infty.$$

- Clearly $\|\mathbb{E}(Y_i|\mathcal{M}_0) \mathbb{E}(Y_i)\|_1 \le (|a_1| + \dots + |a_k|)\alpha_{1,X}(i)$, so that the fidi convergence holds as soon as $\sum_{i>0} \alpha_{1,X}(i) < \infty$.
- For the tightness, one needs a new Rosenthal inequality for random variables with moments of order p, for p in [2,3].

Joint work with F. Merlevède (in progress).

• Let $(X_i)_{i \in \mathbb{Z}}$ be stationary, and $F_n(t) = n^{-1} \sum_{k=1}^n \mathbf{1}_{X_k \leq t}$. Let $v_n = n^{1/2} (2 \ln \ln(n))^{-1/2}$.

Joint work with F. Merlevède (in progress).

- Let $(X_i)_{i \in \mathbb{Z}}$ be stationary, and $F_n(t) = n^{-1} \sum_{k=1}^n \mathbf{1}_{X_k \le t}$. Let $v_n = n^{1/2} (2 \ln \ln(n))^{-1/2}$.
- If β_{2,X}(k) = O(1/k^{1+ε}) and if F_X is continuous, then the sequence v_n(F_n F_X) is almost surely relatively compact with respect to the supremum norm, and the set of limit points K is the unit ball in the RKHS generated by the covariance Γ given in (1).

Joint work with F. Merlevède (in progress).

- Let $(X_i)_{i \in \mathbb{Z}}$ be stationary, and $F_n(t) = n^{-1} \sum_{k=1}^n \mathbf{1}_{X_k \le t}$. Let $v_n = n^{1/2} (2 \ln \ln(n))^{-1/2}$.
- If β_{2,X}(k) = O(1/k^{1+ε}) and if F_X is continuous, then the sequence v_n(F_n F_X) is almost surely relatively compact with respect to the supremum norm, and the set of limit points K is the unit ball in the RKHS generated by the covariance Γ given in (1).
- *K* is a compact set in $C(\mathbb{R}, \|\cdot\|_{\infty})$ which can be described as follows. Let *G* be the Gaussian process with covariance Γ , then

$$K = \{f : f(x) = \mathbb{E}(\xi G(x)), \|\xi\|_2 \le 1\}.$$

Joint work with F. Merlevède (in progress).

- Let $(X_i)_{i \in \mathbb{Z}}$ be stationary, and $F_n(t) = n^{-1} \sum_{k=1}^n \mathbf{1}_{X_k \le t}$. Let $v_n = n^{1/2} (2 \ln \ln(n))^{-1/2}$.
- If β_{2,X}(k) = O(1/k^{1+ε}) and if F_X is continuous, then the sequence v_n(F_n F_X) is almost surely relatively compact with respect to the supremum norm, and the set of limit points K is the unit ball in the RKHS generated by the covariance Γ given in (1).
- *K* is a compact set in $C(\mathbb{R}, \|\cdot\|_{\infty})$ which can be described as follows. Let *G* be the Gaussian process with covariance Γ , then

$$K = \{f : f(x) = \mathbb{E}(\xi G(x)), \|\xi\|_2 \le 1\}.$$

• Previous result by Philipp (1977), for functions of α -mixing sequences and Lacunary sequences.

• For the fidi conv., we prove that $v_n(F_n(t_1) - F_X(t_1), \ldots, F_n(t_d) - F_X(t_d))^t$ is a.s. relatively compact in \mathbb{R}^d with set of limit points K^T , the restriction of K to $T = (t_1, \ldots, t_d)$. This follows from Theorem 1 of a joint paper with F. Merlevède (2009) as soon as $\sum_{k>0} \beta_2(k) < \infty$.

- For the fidi conv., we prove that v_n(F_n(t₁) F_X(t₁),...,F_n(t_d) F_X(t_d))^t is a.s. relatively compact in ℝ^d with set of limit points K^T, the restriction of K to T = (t₁,...,t_d). This follows from Theorem 1 of a joint paper with F. Merlevède (2009) as soon as ∑_{k>0} β₂(k) < ∞.
- For the tightness, we go back to [0,1] by setting $Y_i = F_b(X_i)$, where F_b is an appropriate d. f. related to the dependence structure of $(X_i)_{i \in \mathbb{Z}}$.

- For the fidi conv., we prove that $v_n(F_n(t_1) F_X(t_1), \ldots, F_n(t_d) F_X(t_d))^t$ is a.s. relatively compact in \mathbb{R}^d with set of limit points K^T , the restriction of K to $T = (t_1, \ldots, t_d)$. This follows from Theorem 1 of a joint paper with F. Merlevède (2009) as soon as $\sum_{k>0} \beta_2(k) < \infty$.
- For the tightness, we go back to [0,1] by setting $Y_i = F_b(X_i)$, where F_b is an appropriate d. f. related to the dependence structure of $(X_i)_{i \in \mathbb{Z}}$.
- For $K \in \mathbb{N}$ let $\Pi_K(x) = 2^{-K}[2^K x]$. Let $\mu_k(t) = k(F_k(t) F_Y(t))$. For the tightness, we prove that there exist positive numbers $(A_K)_{K \ge 1}$ tending to zero as K tends to infinity, such that

 $\sum_{n\geq 3} \frac{1}{n} \mathbb{P}\Big(\sup_{1\leq k\leq n} \sup_{t\in[0,1]} |\mu_k(t) - \mu_k(\Pi_K(t))| > A_K \sqrt{n\ln(\ln(n))}\Big) < \infty.$

- For the fidi conv., we prove that $v_n(F_n(t_1) F_X(t_1), \ldots, F_n(t_d) F_X(t_d))^t$ is a.s. relatively compact in \mathbb{R}^d with set of limit points K^T , the restriction of K to $T = (t_1, \ldots, t_d)$. This follows from Theorem 1 of a joint paper with F. Merlevède (2009) as soon as $\sum_{k>0} \beta_2(k) < \infty$.
- For the tightness, we go back to [0, 1] by setting $Y_i = F_b(X_i)$, where F_b is an appropriate d. f. related to the dependence structure of $(X_i)_{i \in \mathbb{Z}}$.
- For $K \in \mathbb{N}$ let $\Pi_K(x) = 2^{-K}[2^K x]$. Let $\mu_k(t) = k(F_k(t) F_Y(t))$. For the tightness, we prove that there exist positive numbers $(A_K)_{K \ge 1}$ tending to zero as K tends to infinity, such that

 $\sum_{n\geq 3} \frac{1}{n} \mathbb{P}\Big(\sup_{1\leq k\leq n} \sup_{t\in[0,1]} |\mu_k(t) - \mu_k(\Pi_K(t))| > A_K \sqrt{n\ln(\ln(n))}\Big) < \infty.$

 To prove this inequality, we combine the Rosenthal inequality mentioned above and a maximal inequality for α dependent sequences given in the paper with F. Merlevède (2009).

The case of intermittent maps

Let θ be the LSV map, with γ < 1/2. The preceding result can be directly applied to the Markov chain associated to θ, but not to θ itself, because the identity between the distribution of (θ⁰, θ¹,..., θⁿ) and that of (X_n, X_{n-1},..., X₀) is not enough to prove almost sure results.

The case of intermittent maps

- Let θ be the LSV map, with γ < 1/2. The preceding result can be directly applied to the Markov chain associated to θ, but not to θ itself, because the identity between the distribution of (θ⁰, θ¹,..., θⁿ) and that of (X_n, X_{n-1},..., X₀) is not enough to prove almost sure results.
- In fact, the tightness is not a problem, because of the inequality

$$\nu_{\gamma} \left(\sup_{1 \le k \le n} \sup_{t \in [0,1]} |\mu_{k,\theta}(t) - \mu_{k,\theta}(\Pi_{K}(t))| > \lambda \right)$$

$$\leq \mathbb{P} \left(2 \sup_{1 \le k \le n} \sup_{t \in [0,1]} |\mu_{k,X}(t) - \mu_{k,X}(\Pi_{K}(t))| > \lambda \right),$$

where $\mu_{k,\theta}(t) = k(F_{k,\theta}(t) - F(t)).$

Finite dimensional convergence

• Again, we want to control the almost sure behavior of $v_n(F_{n,\theta}(t_1) - F(t_1), \ldots, F_{n,\theta}(t_d) - F(t_d))^t$. We approximate the indicators $f_i = \mathbf{1}_{[0,t_i]}$ by Lipschitz functions $f_{i,\varepsilon}$ such that $\nu_{\gamma}(|f_i - f_{i,\varepsilon}|^2)$ tends to zero as ε tends to zero.

Finite dimensional convergence

- Again, we want to control the almost sure behavior of $v_n(F_{n,\theta}(t_1) F(t_1), \ldots, F_{n,\theta}(t_d) F(t_d))^t$. We approximate the indicators $f_i = \mathbf{1}_{[0,t_i]}$ by Lipschitz functions $f_{i,\varepsilon}$ such that $\nu_{\gamma}(|f_i f_{i,\varepsilon}|^2)$ tends to zero as ε tends to zero.
- Melbourne and Nicol (2009): $v_n(n^{-1}S_n(f_{1,\varepsilon}), \ldots, n^{-1}S_n(f_{d,\varepsilon}))^t$ is a.s. relatively compact, and the limit set is the unit ball in the RKHS generated by the limiting covariance Γ_{ε} .

Finite dimensional convergence

- Again, we want to control the almost sure behavior of $v_n(F_{n,\theta}(t_1) F(t_1), \ldots, F_{n,\theta}(t_d) F(t_d))^t$. We approximate the indicators $f_i = \mathbf{1}_{[0,t_i]}$ by Lipschitz functions $f_{i,\varepsilon}$ such that $\nu_{\gamma}(|f_i f_{i,\varepsilon}|^2)$ tends to zero as ε tends to zero.
- Melbourne and Nicol (2009): $v_n(n^{-1}S_n(f_{1,\varepsilon}), \ldots, n^{-1}S_n(f_{d,\varepsilon}))^t$ is a.s. relatively compact, and the limit set is the unit ball in the RKHS generated by the limiting covariance Γ_{ε} .
- We first prove that Γ_{ε} converges to $(\Gamma(t_i, t_j))_{1 \le i,j \le d}$. Next, by the maximal inequality in the paper with F. Merlevède (2009),

$$\limsup_{n \to \infty} v_n \sum_{i=1}^d |F_{n,\theta}(t_i) - F(t_i) - n^{-1} S_n(f_i)| \le C(\varepsilon) \text{ a.s.}$$

with $C(\varepsilon) \rightarrow 0$. The result follows.

Bibliographie

- Billingsley: Convergence of probability measures. Wiley. (1968).
- Borovkova, Burton and Dehling: Limit theorems for functionals of mixing processes with application to U-statistics and dimension estimation. Trans. AMS (2001)
- Dedecker: An empirical central limit theorem for intermittent maps. PTRF. (2010)
- Dedecker, Gouëzel and Merlevède: Some almost sure results for unbounded functions of intermittent maps and their associated Markov chains. Preprint (2008). To appear in Ann. IHP
- Dedecker and Merlevède: ASIP for stat. sequence of Hilbert-valued random variables. Preprint (2009).
- Dedecker and Prieur: Unbounded functions of intermittent maps for which the CLT holds. Alea. (2009).
- Gordin: Abstract of communications. International conference on probability theory, Vilnius, (1973).
- Gouëzel: Central limit theorems and stable laws for intermittent maps. PTRF (2004).
- Hofbauer and Keller: Ergodic properties of invariant measures for piec. mon. transf. Math. Z. (1982).
- Maume-Deschamps: Projective metrics and mixing properties on towers. Trans. AMS (2001).
- Melbourne and Nicol: A vector-valued ASIP for hyperbolic dynamical systems. AOP. (2009).
- Philipp: Functional LIL for empirical d. f. of weakly dependent random variables. AOP (1977).