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Some measures of dependence

(Xi)i∈Z: stationary sequence of real valued random variables.
Let M0 = σ(Xi, i ≤ 0). Let F be the d. f. of Xi and FXk|M0

be the
conditional d. f. of Xk given M0. Let Gk = FXk|M0

− F . Define

φ1,X(k) = sup
t∈R

‖FXk|M0
(t) − F (t)‖∞ ,

φ2,X(k) = φ1,X(k) ∨ sup
i>j≥k

sup
t,s∈R

∥

∥

∥
Gi(t)Gj(s) − E(Gi(t)Gj(s))

∥

∥

∥

∞
.

α1,X(k) = sup
t∈R

‖FXk|M0
(t) − F (t)‖1 ,

α2,X(k) = α1,X(k) ∨ sup
i>j≥k

sup
t,s∈R

∥

∥

∥
Gi(t)Gj(s) − E(Gi(t)Gj(s))

∥

∥

∥

1
.

β1,X(k) =
∥

∥

∥
sup
t∈R

|FXk|M0
(t) − F (t)|

∥

∥

∥

1
,

β2,X(k) = β1,X(k) ∨ sup
i>j≥k

∥

∥

∥
sup
t,s∈R

|Gi(t)Gj(s) − E(Gi(t)Gj(s))|
∥

∥

∥

1
.
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Iterated transformations and Markov chains

• Let θ be a map from [0, 1] to itself, preserving a probability ν on
[0, 1]. The sequence (θi)i≥0 of random variables from ([0, 1], ν) to
[0, 1] is strictly stationary.
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Iterated transformations and Markov chains

• Let θ be a map from [0, 1] to itself, preserving a probability ν on
[0, 1]. The sequence (θi)i≥0 of random variables from ([0, 1], ν) to
[0, 1] is strictly stationary.

• Let K be the Perron-Frobenius operator of θ: for any functions h, f

in L
2([0, 1], ν),

ν(K(h) · f) = ν(h · f ◦ θ) .
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Iterated transformations and Markov chains

• Let θ be a map from [0, 1] to itself, preserving a probability ν on
[0, 1]. The sequence (θi)i≥0 of random variables from ([0, 1], ν) to
[0, 1] is strictly stationary.

• Let K be the Perron-Frobenius operator of θ: for any functions h, f

in L
2([0, 1], ν),

ν(K(h) · f) = ν(h · f ◦ θ) .

• It is easy to see that (θ0, θ1, . . . , θn) is distributed as
(Xn, Xn−1, . . . , X0), where (Xi)i≥0 is a stationary Markov chain
with invariant measure ν and transition kernel K.
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Properties of the associated chains: Example 1

• Assume that θ is uniformly expanding with an unique a. c. invariant
probability measure whose density h is such that

1

h
1h>0 is a BV function.

Then, using the contraction properties of K in the space of BV
functions (see for instance Broise (1996)), we have proved with C.
Prieur (2005) that

φ2,X(n) ≤ Cρn, with ρ < 1 .
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Properties of the associated chains: Example 1

• Assume that θ is uniformly expanding with an unique a. c. invariant
probability measure whose density h is such that

1

h
1h>0 is a BV function.

Then, using the contraction properties of K in the space of BV
functions (see for instance Broise (1996)), we have proved with C.
Prieur (2005) that

φ2,X(n) ≤ Cρn, with ρ < 1 .

• Standard examples of uniformly expanding maps are

◦ the β-transformations: θ(x) = βx − [βx], pour β > 1.

◦ the Gauss map: θ(x) = x−1 − [x−1].
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Properties of the associated chains: Example 2

The graph of an intermittent map is as follows:

Behavior around zero: θ′(0) = 1 and θ′′(x) ∼ cxγ−1 when x → 0, for
some c > 0 and 0 < γ < 1.
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Properties of the associated chains: Example 2

• An example of intermittent map is the LSV map:

for 0 < γ < 1, θ(x) =







x(1 + 2γxγ) if x ∈ [0, 1/2[

2x − 1 if x ∈ [1/2, 1]
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Properties of the associated chains: Example 2

• An example of intermittent map is the LSV map:

for 0 < γ < 1, θ(x) =







x(1 + 2γxγ) if x ∈ [0, 1/2[

2x − 1 if x ∈ [1/2, 1]

• Starting from the properties of K in the space of Hölder functions
(cf. Maume-Deschamps (2001)), we have proved with C. Prieur
(2009) that, for any ε > 0,

A

n
1−γ

γ

≤ β2,X(n) ≤ B(ε)

n
1−γ

γ
−ε

.
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Properties of the associated chains: Example 2

• An example of intermittent map is the LSV map:

for 0 < γ < 1, θ(x) =







x(1 + 2γxγ) if x ∈ [0, 1/2[

2x − 1 if x ∈ [1/2, 1]

• Starting from the properties of K in the space of Hölder functions
(cf. Maume-Deschamps (2001)), we have proved with C. Prieur
(2009) that, for any ε > 0,

A

n
1−γ

γ

≤ β2,X(n) ≤ B(ε)

n
1−γ

γ
−ε

.

• With S. Gouëzel and F. Merlevède (2008), we have proved that

A

n
1−γ

γ

≤ α2,X(n) ≤ B

n
1−γ

γ

.
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CLT for uniformly expanding maps

• Let C(M, p, ν) be the closure of the convex hull of the set of
functions f which are monotonic on some open interval of ]0, 1[

and 0 elsewhere, and such that ν(|f |p) ≤ M .
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CLT for uniformly expanding maps

• Let C(M, p, ν) be the closure of the convex hull of the set of
functions f which are monotonic on some open interval of ]0, 1[

and 0 elsewhere, and such that ν(|f |p) ≤ M .

• Let Sn(f) =
∑n

i=1(f ◦ θi − ν(f)). If θ is uniformly expanding, and if
f ∈ C(M, 2, ν), then, on ([0, 1], ν),

1√
n

Sn(f)
L−→

n→∞
N (0, σ2(f)),

where

σ2(f) = Varν(f) + 2
∑

k>0

Covν(f, f ◦ θk) .
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CLT for uniformly expanding maps

• Let C(M, p, ν) be the closure of the convex hull of the set of
functions f which are monotonic on some open interval of ]0, 1[

and 0 elsewhere, and such that ν(|f |p) ≤ M .

• Let Sn(f) =
∑n

i=1(f ◦ θi − ν(f)). If θ is uniformly expanding, and if
f ∈ C(M, 2, ν), then, on ([0, 1], ν),

1√
n

Sn(f)
L−→

n→∞
N (0, σ2(f)),

where

σ2(f) = Varν(f) + 2
∑

k>0

Covν(f, f ◦ θk) .

• In particular, the CLT holds if f is monotonic on ]0, 1[, and
∫

f2(t)dt < ∞.
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CLT for intermittent maps

• Let H be a tail function. Let F(H, ν) be the closure of the convex
hull of the set of functions f which are monotonic on some open
interval of ]0, 1[ and 0 elsewhere, and such that ν(|f | > t) ≤ H(t).
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CLT for intermittent maps

• Let H be a tail function. Let F(H, ν) be the closure of the convex
hull of the set of functions f which are monotonic on some open
interval of ]0, 1[ and 0 elsewhere, and such that ν(|f | > t) ≤ H(t).

• Let θ be intermittent, with γ < 1/2. With S. Gouëzel and F.
Merlevède (2008), we proved the CLT for f ∈ F(H, ν), as soon as

∫ ∞

0

x(H(x))
1−2γ
1−γ dx < ∞ .
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CLT for intermittent maps

• Let H be a tail function. Let F(H, ν) be the closure of the convex
hull of the set of functions f which are monotonic on some open
interval of ]0, 1[ and 0 elsewhere, and such that ν(|f | > t) ≤ H(t).

• Let θ be intermittent, with γ < 1/2. With S. Gouëzel and F.
Merlevède (2008), we proved the CLT for f ∈ F(H, ν), as soon as

∫ ∞

0

x(H(x))
1−2γ
1−γ dx < ∞ .

• - if f ↓ on ]0, 1] and f(x) ≤ Cx−a, the CLT holds if a <
1

2
− γ . The

cut is optimal: see Gouëzel (2004).

- If f ↑ on [0, 1[ and f(x) ≤ C(1 − x)−a, the CLT holds if

a <
1

2
− γ

2(1 − γ)
.
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Proof of the CLT

• The CLT for Sn(f) holds as soon as
∑

k>0

‖(f − ν(f))(Kk(f) − ν(f))‖1,ν < ∞ .

Conference in honour of Magda Peligrad – p. 9/18



Proof of the CLT

• The CLT for Sn(f) holds as soon as
∑

k>0

‖(f − ν(f))(Kk(f) − ν(f))‖1,ν < ∞ .

• If f ∈ F(H, ν), then

‖(f − ν(f))(Kk(f) − ν(f))‖1,ν ≤ C

∫ α1,X(k)

0

Q2(u)du ,

where Q is the cadlag inverse of H.
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Proof of the CLT

• The CLT for Sn(f) holds as soon as
∑

k>0

‖(f − ν(f))(Kk(f) − ν(f))‖1,ν < ∞ .

• If f ∈ F(H, ν), then

‖(f − ν(f))(Kk(f) − ν(f))‖1,ν ≤ C

∫ α1,X(k)

0

Q2(u)du ,

where Q is the cadlag inverse of H.

• If α1,X(n) = O(n(γ−1)/γ), then

∑

k>0

∫ α1,X(k)

0

Q2(u)du < ∞ as soon as
∫ ∞

0

x(H(x))
1−2γ
1−γ dx < ∞ .
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Empirical CLT for uniformly expanding maps.

• Let Fn,θ(t) = n−1
∑n

i=1 1θi≤t and F be the d. f. of ν.
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Empirical CLT for uniformly expanding maps.

• Let Fn,θ(t) = n−1
∑n

i=1 1θi≤t and F be the d. f. of ν.

• If θ(x) = 2x − [2x] or if θ is the Gauss map, the ECLT follows from
a general result for functions of φ-mixing sequences given in
Billingsley (1968):

√
n(Fn,θ − F ) converges in distribution to a

Gaussian process G with covariance:

Cov(G(s), G(t)) =
∑

k≥1

Covν(1θ≤t,1θk≤s) +
∑

k>1

Covν(1θ≤s,1θk≤t) .

Conference in honour of Magda Peligrad – p. 10/18



Empirical CLT for uniformly expanding maps.

• Let Fn,θ(t) = n−1
∑n

i=1 1θi≤t and F be the d. f. of ν.

• If θ(x) = 2x − [2x] or if θ is the Gauss map, the ECLT follows from
a general result for functions of φ-mixing sequences given in
Billingsley (1968):

√
n(Fn,θ − F ) converges in distribution to a

Gaussian process G with covariance:

Cov(G(s), G(t)) =
∑

k≥1

Covν(1θ≤t,1θk≤s) +
∑

k>1

Covν(1θ≤s,1θk≤t) .

• If θ is uniformly expanding with a finite partition, Hofbauer and
Keller (1982) showed that θi is a function of β-mixing sequences.
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Empirical CLT for uniformly expanding maps.

• Let Fn,θ(t) = n−1
∑n

i=1 1θi≤t and F be the d. f. of ν.

• If θ(x) = 2x − [2x] or if θ is the Gauss map, the ECLT follows from
a general result for functions of φ-mixing sequences given in
Billingsley (1968):

√
n(Fn,θ − F ) converges in distribution to a

Gaussian process G with covariance:

Cov(G(s), G(t)) =
∑

k≥1

Covν(1θ≤t,1θk≤s) +
∑

k>1

Covν(1θ≤s,1θk≤t) .

• If θ is uniformly expanding with a finite partition, Hofbauer and
Keller (1982) showed that θi is a function of β-mixing sequences.

• The ECLT follows from a general result for functions of β-mixing
sequences given in Borovkova, Burton and Dehling (2001).
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An ECLT for β-dependent sequences.

• Let (Xi)i∈Z be stationary, and Fn(t) = n−1
∑n

k=1 1Xk≤t.
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An ECLT for β-dependent sequences.

• Let (Xi)i∈Z be stationary, and Fn(t) = n−1
∑n

k=1 1Xk≤t.

• If β2,X(k) = O(1/k1+ε), and if FX is continuous then
√

n(Fn − FX)

converge in distribution in the space D of cadlag functions to a
gaussian process G with covariance

Γ(s, t) =
∑

k≥0

Cov(1X0≤t,1Xk≤s) +
∑

k>0

Cov(1X0≤s,1Xk≤t) . (1)
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An ECLT for β-dependent sequences.

• Let (Xi)i∈Z be stationary, and Fn(t) = n−1
∑n

k=1 1Xk≤t.

• If β2,X(k) = O(1/k1+ε), and if FX is continuous then
√

n(Fn − FX)

converge in distribution in the space D of cadlag functions to a
gaussian process G with covariance

Γ(s, t) =
∑

k≥0

Cov(1X0≤t,1Xk≤s) +
∑

k>0

Cov(1X0≤s,1Xk≤t) . (1)

• This result applies to uniformly expanding maps without the
assumption of finite partition.
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Empirical CLT for intermittent maps

• If θ is an intermittent map with γ < 1/2, then the ECLT holds.
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Empirical CLT for intermittent maps

• If θ is an intermittent map with γ < 1/2, then the ECLT holds.

• This result is no longer valid if γ = 1/2. For instance, if θ is the map

θ(x) =







x(1 +
√

2x) if x ∈ [0, 1/2[

2x − 1 if x ∈ [1/2, 1]

one can prove that the finite dimensional marginals of the process
(n/ ln(n))1/2(Fn,θ − F ) converges in distribution to those of the
degenerated Gaussian process G defined by:

for any t ∈ [0, 1], G(t) =
√

h(1/2)(1 − F (t))1t6=0Z ,

where Z is a standard normal and h is the density of ν.
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Sketch of proof of the empirical CLT

• For the fidi convergence, let t1 < t2 < · · · < tk and (a1, . . . , ak) in
R

k. Let Yi = a11Xi≤t1 + · · ·+ ak1Xi≤tk
and Sn(Y ) = Y1 + · · ·+ Yn.
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Sketch of proof of the empirical CLT

• For the fidi convergence, let t1 < t2 < · · · < tk and (a1, . . . , ak) in
R

k. Let Yi = a11Xi≤t1 + · · · + ak1Xi≤tk
and Sn(Y ) = Y1 + · · · + Yn.

• According to Gordin CLT (1973) for stationary ergodic sequences
of bounded r.v.’s, n−1/2(Sn(Y ) − E(Sn(Y ))) converges to a normal
law provided that

∑

i>0

‖E(Yi|M0) − E(Yi)‖1 < ∞ .
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Sketch of proof of the empirical CLT

• For the fidi convergence, let t1 < t2 < · · · < tk and (a1, . . . , ak) in
R

k. Let Yi = a11Xi≤t1 + · · · + ak1Xi≤tk
and Sn(Y ) = Y1 + · · · + Yn.

• According to Gordin CLT (1973) for stationary ergodic sequences
of bounded r.v.’s, n−1/2(Sn(Y ) − E(Sn(Y ))) converges to a normal
law provided that

∑

i>0

‖E(Yi|M0) − E(Yi)‖1 < ∞ .

• Clearly ‖E(Yi|M0) − E(Yi)‖1 ≤ (|a1| + · · · + |ak|)α1,X(i), so that
the fidi convergence holds as soon as

∑

i>0 α1,X(i) < ∞ .
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Sketch of proof of the empirical CLT

• For the fidi convergence, let t1 < t2 < · · · < tk and (a1, . . . , ak) in
R

k. Let Yi = a11Xi≤t1 + · · · + ak1Xi≤tk
and Sn(Y ) = Y1 + · · · + Yn.

• According to Gordin CLT (1973) for stationary ergodic sequences
of bounded r.v.’s, n−1/2(Sn(Y ) − E(Sn(Y ))) converges to a normal
law provided that

∑

i>0

‖E(Yi|M0) − E(Yi)‖1 < ∞ .

• Clearly ‖E(Yi|M0) − E(Yi)‖1 ≤ (|a1| + · · · + |ak|)α1,X(i), so that
the fidi convergence holds as soon as

∑

i>0 α1,X(i) < ∞ .

• For the tightness, one needs a new Rosenthal inequality for
random variables with moments of order p, for p in [2, 3].
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Finkelstein’s theorem for β-dependent sequences

Joint work with F. Merlevède (in progress).

• Let (Xi)i∈Z be stationary, and Fn(t) = n−1
∑n

k=1 1Xk≤t. Let
vn = n1/2(2 ln ln(n))−1/2.
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Finkelstein’s theorem for β-dependent sequences

Joint work with F. Merlevède (in progress).

• Let (Xi)i∈Z be stationary, and Fn(t) = n−1
∑n

k=1 1Xk≤t. Let
vn = n1/2(2 ln ln(n))−1/2.

• If β2,X(k) = O(1/k1+ε) and if FX is continuous, then the sequence
vn(Fn − FX) is almost surely relatively compact with respect to the
supremum norm, and the set of limit points K is the unit ball in the
RKHS generated by the covariance Γ given in (1).
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Finkelstein’s theorem for β-dependent sequences

Joint work with F. Merlevède (in progress).

• Let (Xi)i∈Z be stationary, and Fn(t) = n−1
∑n

k=1 1Xk≤t. Let
vn = n1/2(2 ln ln(n))−1/2.

• If β2,X(k) = O(1/k1+ε) and if FX is continuous, then the sequence
vn(Fn − FX) is almost surely relatively compact with respect to the
supremum norm, and the set of limit points K is the unit ball in the
RKHS generated by the covariance Γ given in (1).

• K is a compact set in C(R, ‖ · ‖∞) which can be described as
follows. Let G be the Gaussian process with covariance Γ, then

K = {f : f(x) = E(ξG(x)), ‖ξ‖2 ≤ 1} .
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Finkelstein’s theorem for β-dependent sequences

Joint work with F. Merlevède (in progress).

• Let (Xi)i∈Z be stationary, and Fn(t) = n−1
∑n

k=1 1Xk≤t. Let
vn = n1/2(2 ln ln(n))−1/2.

• If β2,X(k) = O(1/k1+ε) and if FX is continuous, then the sequence
vn(Fn − FX) is almost surely relatively compact with respect to the
supremum norm, and the set of limit points K is the unit ball in the
RKHS generated by the covariance Γ given in (1).

• K is a compact set in C(R, ‖ · ‖∞) which can be described as
follows. Let G be the Gaussian process with covariance Γ, then

K = {f : f(x) = E(ξG(x)), ‖ξ‖2 ≤ 1} .

• Previous result by Philipp (1977), for functions of α-mixing
sequences and Lacunary sequences.
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Sketch of proof of Finkestein’s theorem

• For the fidi conv., we prove that vn(Fn(t1) − FX(t1), . . . , Fn(td) − FX(td))
t

is a.s. relatively compact in R
d with set of limit points KT , the restriction of

K to T = (t1, . . . , td). This follows from Theorem 1 of a joint paper with F.

Merlevède (2009) as soon as
∑

k>0 β2(k) < ∞.
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Sketch of proof of Finkestein’s theorem

• For the fidi conv., we prove that vn(Fn(t1) − FX(t1), . . . , Fn(td) − FX(td))
t

is a.s. relatively compact in R
d with set of limit points KT , the restriction of

K to T = (t1, . . . , td). This follows from Theorem 1 of a joint paper with F.

Merlevède (2009) as soon as
∑

k>0 β2(k) < ∞.

• For the tightness, we go back to [0, 1] by setting Yi = Fb(Xi), where Fb is
an appropriate d. f. related to the dependence structure of (Xi)i∈Z.
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Sketch of proof of Finkestein’s theorem

• For the fidi conv., we prove that vn(Fn(t1) − FX(t1), . . . , Fn(td) − FX(td))
t

is a.s. relatively compact in R
d with set of limit points KT , the restriction of

K to T = (t1, . . . , td). This follows from Theorem 1 of a joint paper with F.

Merlevède (2009) as soon as
∑

k>0 β2(k) < ∞.

• For the tightness, we go back to [0, 1] by setting Yi = Fb(Xi), where Fb is
an appropriate d. f. related to the dependence structure of (Xi)i∈Z.

• For K ∈ N let ΠK(x) = 2−K [2Kx]. Let µk(t) = k(Fk(t) − FY (t)). For the

tightness, we prove that there exist positive numbers (AK)K≥1 tending to
zero as K tends to infinity, such that

∑

n≥3

1

n
P

(

sup
1≤k≤n

sup
t∈[0,1]

|µk(t) − µk(ΠK(t))| > AK

√

n ln(ln(n))
)

< ∞ .
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Sketch of proof of Finkestein’s theorem

• For the fidi conv., we prove that vn(Fn(t1) − FX(t1), . . . , Fn(td) − FX(td))
t

is a.s. relatively compact in R
d with set of limit points KT , the restriction of

K to T = (t1, . . . , td). This follows from Theorem 1 of a joint paper with F.

Merlevède (2009) as soon as
∑

k>0 β2(k) < ∞.

• For the tightness, we go back to [0, 1] by setting Yi = Fb(Xi), where Fb is
an appropriate d. f. related to the dependence structure of (Xi)i∈Z.

• For K ∈ N let ΠK(x) = 2−K [2Kx]. Let µk(t) = k(Fk(t) − FY (t)). For the

tightness, we prove that there exist positive numbers (AK)K≥1 tending to
zero as K tends to infinity, such that

∑

n≥3

1

n
P

(

sup
1≤k≤n

sup
t∈[0,1]

|µk(t) − µk(ΠK(t))| > AK

√

n ln(ln(n))
)

< ∞ .

• To prove this inequality, we combine the Rosenthal inequality mentioned

above and a maximal inequality for α dependent sequences given in the
paper with F. Merlevède (2009).

Conference in honour of Magda Peligrad – p. 15/18



The case of intermittent maps

• Let θ be the LSV map, with γ < 1/2. The preceding result can be
directly applied to the Markov chain associated to θ, but not to θ

itself, because the identity between the distribution of
(θ0, θ1, . . . , θn) and that of (Xn, Xn−1, . . . , X0) is not enough to
prove almost sure results.
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The case of intermittent maps

• Let θ be the LSV map, with γ < 1/2. The preceding result can be
directly applied to the Markov chain associated to θ, but not to θ

itself, because the identity between the distribution of
(θ0, θ1, . . . , θn) and that of (Xn, Xn−1, . . . , X0) is not enough to
prove almost sure results.

• In fact, the tightness is not a problem, because of the inequality

νγ

(

sup
1≤k≤n

sup
t∈[0,1]

|µk,θ(t) − µk,θ(ΠK(t))| > λ
)

≤ P

(

2 sup
1≤k≤n

sup
t∈[0,1]

|µk,X(t) − µk,X(ΠK(t))| > λ
)

,

where µk,θ(t) = k(Fk,θ(t) − F (t)).
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Finite dimensional convergence

• Again, we want to control the almost sure behavior of
vn(Fn,θ(t1) − F (t1), . . . , Fn,θ(td) − F (td))

t. We approximate the
indicators fi = 1[0,ti] by Lipschitz functions fi,ε such that
νγ(|fi − fi,ε|2) tends to zero as ε tends to zero.
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t. We approximate the
indicators fi = 1[0,ti] by Lipschitz functions fi,ε such that
νγ(|fi − fi,ε|2) tends to zero as ε tends to zero.

• Melbourne and Nicol (2009): vn(n−1Sn(f1,ε), . . . , n
−1Sn(fd,ε))

t is
a.s. relatively compact, and the limit set is the unit ball in the
RKHS generated by the limiting covariance Γε.

Conference in honour of Magda Peligrad – p. 17/18



Finite dimensional convergence

• Again, we want to control the almost sure behavior of
vn(Fn,θ(t1) − F (t1), . . . , Fn,θ(td) − F (td))

t. We approximate the
indicators fi = 1[0,ti] by Lipschitz functions fi,ε such that
νγ(|fi − fi,ε|2) tends to zero as ε tends to zero.

• Melbourne and Nicol (2009): vn(n−1Sn(f1,ε), . . . , n
−1Sn(fd,ε))

t is
a.s. relatively compact, and the limit set is the unit ball in the
RKHS generated by the limiting covariance Γε.

• We first prove that Γε converges to (Γ(ti, tj))1≤i,j≤d. Next, by the
maximal inequality in the paper with F. Merlevède (2009),

lim sup
n→∞

vn

d
∑

i=1

|Fn,θ(ti) − F (ti) − n−1Sn(fi)| ≤ C(ε) a.s.

with C(ε) → 0. The result follows.
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