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Hsu-Robbins and Erdös

A famous result by Hsu and Robbins (1947) says that if X1,X2, . . .
is a sequence of independent identically distributed random
variables with zero mean and finite variance and

Sn := X1 + . . .+ Xn,

then ∑
n≥1

P (|Sn| > εn) <∞

for every ε > 0.

Ciprian A. Tudor Hsu-Robbins theorem for the correlated sequences



Plan
Classical Hsu-Robbins theorem

Variations of the fractional Brownian motion
Multiple stochastic integrals

Hsu-Robbins theorem for the increments of the fBm
Moving averages

Note that, by the law of large numbers,

Sn

n
→n→∞ 0 = E(X1)

so

P (|Sn| > εn) = P

(
|Sn

n
| > ε

)
→n→∞ 0

for every ε > 0.
So, the result of Hsu-Robbins says that if the variance of X1 is
finite, this convergence is strong enough to ensure the summability
of the series.
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Later, Erdös (1949) showed that the converse implication also
holds, namely if the series∑

n≥1

P (|Sn| > εn)

is finite for every ε > 0 and X1,X2, . . . are independent and
identically distributed, then EX1 = 0 and EX 2

1 <∞.

Since then, many authors extended this result in several directions.
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Spitzer’s showed that∑
n≥1

1

n
P (|Sn| > εn) <∞

for every ε > 0 if and only if EX1 = 0 and E|X1| <∞.

So, one introduces the factor 1
n to ”help” the convergence of the

series and one needs a weaker conditions on the moments

Also, Spitzer’s theorem has been the object of various
generalizations and variants.
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One of the problems related to the Hsu-Robbins’ and Spitzer’s
theorems is to find the precise asymptotic as

ε→ 0

of the quantities ∑
n≥1

P (|Sn| > εn)

and ∑
n≥1

1

n
P (|Sn| > εn)

.
Obviously, these sequences goes to ∞ when ε→ 0.
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Heyde (1975) showed that

lim
ε→0

ε2
∑
n≥1

P (|Sn| > εn) = EX 2
1 (1)

whenever EX1 = 0 and EX 2
1 <∞. In the case when X is attracted

to a stable distribution of exponent α > 1, Spataru proved that

lim
ε→0

1

− log ε

∑
n≥1

1

n
P (|Sn| > εn) =

α

α− 1
. (2)

It also holds for the Gaussian case : the limit is 2
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Variations of the fractional Brownian motion

Our purpose is to prove Hsu-Robbins and Spitzer’s theorems for
sequences of correlated random variables, related to the increments
of fractional Brownian motion or to moving averages sequences

Recall that the fractional Brownian motion (BH
t )t∈[0,1] is a

centered Gaussian process with covariance function
RH(t, s) = E(BH

t BH
s ) = 1

2(t2H + s2H − |t − s|2H). It can be also
defined as the unique self-similar Gaussian process with stationary
increments.
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Concretely, in this paper we will study the behavior of the tail
probabilities of the sequence

Vn =
n−1∑
k=0

Hq

(
nH
(
B k+1

n
− B k

n

))
(3)

=(d)

n−1∑
k=0

Hq (Bk+1 − Bk)

where B is a fractional Brownian motion with Hurst parameter
H ∈ (0, 1) (in the sequel we will omit the superscript H for B) and
Hq is the Hermite polynomial of degree q ≥ 1 given by

Hq(x) = (−1)qe
x2

2
dq

dxq (e−
x2

2 ).
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If q = 1 we have Xk = nH
(
B k+1

n
− B k

n

)
and

EXkXl 6= 0

(unless H = 1
2 .)

If q = 2 then

Xk = H2

(
nH
(
B k+1

n
− B k

n

))
=
(
nH
(
B k+1

n
− B k

n

))2
− 1.
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In our case the variables are correlated. Indeed, for any k , l ≥ 1 we
have

E (Hq(Bk+1 − Bk)Hq(Bl+1 − Bl)) =
1

(q!)
ρH(k − l)q

where the correlation function is

ρH(k) =
1

2

(
(k + 1)2H + (k − 1)2H − 2k2H

)
which is not equal to zero unless H = 1

2 (which is the case of the
standard Brownian motion).
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The convergence of the sequence Vn.

Let q ≥ 2 an integer and let (Bt)t≥0 a fractional Brownian motion
with Hurst parameter H ∈ (0, 1). Then, with some explicit positive
constants c1,q,H , c2,q,H depending only on q and H we have

i. If 0 < H < 1− 1
2q then

Vn

c1,q,H
√

n
→n→∞ N(0, 1) (4)

ii. If 1− 1
2q < H < 1 then

Vn

c2,q,Hn1−q(1−H)
→n→∞ Z (5)

where Z is a Hermite random variable (an iterated
stochastic integral)
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Example : for q = 2 we have the quadratic variations of the fBm
which converge as follows :
if

H <
3

4

these variations converge (after normalization) to the normal law
and
if

H >
3

4

these variations converges (after normalization) to a non-Gaussian
law (double stochastic integral, Rosenblatt)
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Our purpose : prove precise asymptotics in Hsu-Robbins theorem
for Vn, that is look to the quantities∑

n≥1

P (Vn > εn)

and ∑
n≥1

1

n
P (Vn > εn)

-no problems related to the existence of moments
-for every ε > 0 the above series are convergent
- we will use chaos expansion and Malliavin calculus (the so -called
Stein method)
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Multiple Wiener-Itô integrals

Let (Wt)t∈[0,1] a standard Wiener process.

If f ∈ L2([0, 1]n) we define the multiple Wiener integral of f
with respect to W
Let f be a step function (f ∈ S), that means

f =
∑

i1,...,in

ci1,...in1Aii
×...×Ain

(here ci1,...,in = 0 if two indices ik and il are equal and the sets
Ai ∈ B([0, 1]) are disjoint). We define for such a step function

In(f ) =
∑

i1,...,in

ci1,...inW (Ai1) . . .W (Ain)

where e.g. W ([a, b]) = Wb −Wa.
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We have that
• the application In is an isometry on S , i.e.

E (In(f )Im(g)) = n!〈f , g〉L2([0,1]n) if m = n

and

E (In(f )Im(g)) = 0 if m 6= n

• the set S is dense in L2([0, 1]n)
Therefore In can be extended to an isometry from L2([0, 1]n) to
L2(Ω).
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In(f ) = In(f̃ ) where f̃ is the symmetrization of f

Remark : In can be viewed as an iterated stochastic Itô integral

In(f ) = n!

∫ 1

0

∫ tn

0
. . .

∫ t2

0
f (t1, . . . , tn)dWt1 . . . dWtn
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Hermite random variable

The Hermite random variable of order q ≥ 1 that appears as limit
in the above theorem is defined as

Z = d(q,H)Iq(L) (6)

where the kernel L ∈ L2([0, 1]q) is given by

L(y1, . . . , yq) =

∫ 1

y1∨...∨yq

∂1K
H(u, y1) . . . ∂1K

H(u, yq)du.

The constant d(q,H) is a positive normalizing constant that
guarantees that EZ 2 = 1 and KH is the standard kernel of the
fractional Brownian motion. We will not need the explicit
expression of this kernel. Note that the case q = 1 corresponds to
the fractional Brownian motion and the case q = 2 corresponds to
the Rosenblatt process.
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Let us denote, for every ε > 0,

f1(ε) =
∑
n≥1

1

n
P (Vn > εn) =

∑
n≥1

1

n
P
(
Z

(1)
n > c−1

1,q,Hε
√

n
)

(7)

where

Z
(1)
n =

Vn

c1,q,H
√

n
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while if 1− 1
2q < H < 1, we are interested in

f2(ε) =
∑
n≥1

1

n
P
(
Vn > εn2−2q(1−H)

)
=
∑
n≥1

1

n
P
(
Z

(2)
n > c−1

2,q,Hεn
1−q(1−H)

)
(8)

where

Z
(2)
n =

Vn

c2,q,Hn1−q(1−H)
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It is natural to consider the tail probability of order n2−2q(1−H)

because the L2 norm of the sequence Vn is in this case of order
n1−q(1−H).

We are interested to study the behavior of fi (ε) (i = 1, 2) as ε→ 0.

For a given random variable X , we set
ΦX (z) = 1− P(X < z) + P(X < −z).
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The first lemma gives the asymptotics of the functions fi (ε) as

ε→ 0 when Z
(i)
n are replaced by their limits.

Consider c > 0.

i. Let Z (1) be a standard normal random variable.
Then as

1

− log cε

∑
n≥1

1

n
ΦZ (1)(cε

√
n)→ε→0 2.

ii. Let Z (2) be a Hermite random variable or order q
given by (6). Then, for any integer q ≥ 1

1

− log cε

∑
n≥1

1

n
ΦZ (2)(cεn1−q(1−H))→ε→0

1

1− q(1− H)
.
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Let q ≥ 2 and c > 0.
i. If H < 1− 1

2q , let Z (1) be standard normal random variable.
Then it holds

1

− log cε

∑
n≥1

1

n
P
(
|Z (1)

n | > cε
√

n
)
−
∑
n≥1

1

n
P
(
|Z (1)| > cε

√
n
)

→ε→0 0.
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ii. Let Z (2) be a Hermite random variable of order q ≥ 2 and
H > 1− 1

2q . Then

1

− log cε

∑
n≥1

1

n
P
(
|Z (2)

n | > cεn1−q(1−H)
)
−

∑
n≥1

1

n
P
(
|Z (2)| > cεn1−q(1−H)

)
→ε→0 0.
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Idea of the proof

For the part i), it is based on Stein’s method and Malliavin
calculus (F is arbitrary, Z ∼ N(0, 1)) (Nourdin -Peccati)

sup
z∈R
|P(F < z)− P(Z < z)| = sup

z∈R

∣∣E (f ′z (F )− Ffz(F )
)∣∣

where fz is the solution of the Stein’s equation

1(−∞,z)(x)− P(Z < z) = f ′(x)− xf (x), x ∈ R.
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Since

EFf (F ) = EδD(−L)−1Ff (F ) = Ef ′(F )〈D(−L)−1F ,DF 〉

we obtain

sup
z∈R
|P(F < z)− P(Z < z)| ≤

(
E(1− 〈DF ,D(−L)−1F 〉)2

) 1
2

D is the Malliavin derivative, L the Ornstein-Uhlenbeck operator
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To get a feeling
DsWt = 1[0,t](s)

DsW
n
t = nW n−1

t DsWt

Ds In(f ) = In−1(fn(·, s))

(−L)−1In(f ) =
1

n
In(f )
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It follows that

sup
x∈R

∣∣∣P (Z (1)
n > x

)
− P

(
Z (1) > x

)∣∣∣
≤ c


1√
n
, H ∈ (0, 1

2 ]

nH−1, H ∈ [1
2 ,

2q−3
2q−2)

nqH−q+ 1
2 , H ∈ [2q−3

2q−2 , 1−
1
2q ).
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and this implies that∑
n≥1

1

n
sup
x∈R

∣∣∣P (Z (1)
n > x

)
− P

(
Z (1) > x

)∣∣∣
≤ c


∑

n≥1
1

n
√

n
, H ∈ (0, 1

2 ]∑
n≥1 nH−2, H ∈ [1

2 ,
2q−3
2q−2)∑

n≥1 nqH−q− 1
2 , H ∈ [2q−3

2q−2 , 1−
1
2q ).

and the last sums are finite (for the last one we use H < 1− 1
2q ).
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We state now the Spitzer’s theorem for the variations of the
fractional Brownian motion. Let f1, f2 be given by

f1(ε) =
∑
n≥1

1

n
P (Vn > εn) =

∑
n≥1

1

n
P
(
Z

(1)
n > c−1

1,q,Hε
√

n
)

(9)

and

f2(ε) =
∑
n≥1

1

n
P
(
Vn > εn2−2q(1−H)

)
=
∑
n≥1

1

n
P
(
Z

(2)
n > c−1

2,q,Hεn
1−q(1−H)

)
(10)
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i. If 0 < H < 1− 1
2q then

lim
ε→0

1

log(c−1
1,H,qε)

f1(ε) = 2.

ii. If 1 > H > 1− 1
2q then

lim
ε→0

1

log(c−1
2,H,qε)

f2(ε) =
1

1− q(1− H)
.
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for every ε > 0

g1(ε) =
∑
n≥1

P (|Vn| > εn) (11)

if H < 1− 1
2q and by

g2(ε) =
∑
n≥1

P
(
|Vn| > εn2−2q(1−H)

)
(12)

if H > 1− 1
2q . and we estimate the behavior of the functions gi (ε)

as ε→ 0. Note that we can write

g1(ε) =
∑
n≥1

P
(
|Z (1)

n | > c−1
1,q,Hε

√
n
)

g2(ε) =
∑
n≥1

P
(
|Z (2)

n | > c−1
2,q,Hεn

1−q(1−H)
)
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We decompose it as : for H < 1− 1
2q

g1(ε) =
∑
n≥1

P
(
|Z (1)| > c−1

1,q,Hε
√

n
)

+
∑
n≥1

[
P
(
|Z (1)

n | > c−1
1,q,Hε

√
n
)
− P

(
|Z (1)| > c−1

1,q,Hε
√

n
)]
.

and for H > 1− 1
2q

g2(ε)

=
∑
n≥1

P
(
|Z (2)| > εc−1

2,q,Hn1−q(1−H)
)

+

∑
n≥1

[
P
(
|Z (2)

n | > c−1
2,q,Hεn

1−q(1−H)
)
− P

(
|Z (2)| > c−1

2,q,Hεn
1−q(1−H)

)]
.
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Theorem

Let q ≥ 2. Let Z (1) be a standard normal random variable, Z (2) a
Hermite random variable of order q ≥ 2. Then

i. If 0 < H < 1− 1
2q , we have

(c−1
1,q,Hε)2g1(ε)→ε→0 1 = EZ (1).

ii. If 1− 1
2q < H < 1 we have

(c−1
2,q,Hε)

1
1−q(1−H) g2(ε)→ε→0 E|Z (2)|

1
1−q(1−H) .
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Joint work with Solesne Bourguin (Paris 1)
we will consider long memory moving averages defined by

Xn =
∑
i≥1

aiεn−i , n ∈ Z

where the innovations εi are centered i.i.d. random variables
having at least finite second moments and the moving averages ai

are of the form ai = i−βL(i) with β ∈ (1
2 , 1) and L slowly varying

towards infinity. The covariance function ρ(m) = E (X0Xm)
behaves as cβm

−2β+1 when m→∞ and consequently is not
summable since β > 1

2 . Therefore Xn is usually called long-memory
or “long-range dependence” moving average.
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Let K be a deterministic function which has Hermite rank q and
satisfies E(K 2(Xn)) <∞ and define

SN =
N∑

n=1

[K (Xn)− E (K (Xn))] .

Suppose that the αi are regularly varying with exponent −β,
β ∈ (1/2, 1) (i.e. αi = |i |−β L(i) and that L(i) is slowly varying at
∞). S Then
i. If q < (2β − 1)−1, then

h−1
k,βN

βq− q
2
−1SN −→

N→+∞
Z (k) (13)

where Z (q) is a Hermite random variable of order q
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ii. If q > (2β − 1)−1, then

1

σk,β

√
N

SN −→
N→+∞

N (0, 1) (14)

with σk,β a positive constant.
Wu (2006), H-C Ho and T. Hsing (1997), Peligrad and Utev
(1997)
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Take also the innovations ε to be the increments of the Wiener
process

εi = Wi+1 −Wi

Take K = Hq the Hermite polynomials

Ciprian A. Tudor Hsu-Robbins theorem for the correlated sequences



Plan
Classical Hsu-Robbins theorem

Variations of the fractional Brownian motion
Multiple stochastic integrals

Hsu-Robbins theorem for the increments of the fBm
Moving averages

Note that Xn can also be written as

Xn =
∞∑
i=1

αi (Wn−i −Wn−i−1) =
∞∑
i=1

αi I1
(
1[n−i−1,n−i ]

)

= I1


∞∑
i=1

αi1[n−i−1,n−i ]︸ ︷︷ ︸
fn

 = I1 (fn) . (15)
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As K = Hq, SN can be represented as

SN =
N∑

n=1

[Hq(I1(fn))− E (Hq(I1(fn)))] =
1

q!

N∑
n=1

[
Iq(f ⊗q

n )− E
(
Iq(f ⊗q

n )
)]

=
1

q!

N∑
n=1

Iq(f ⊗q
n ) =

1

q!
Iq(

N∑
n=1

f ⊗q
n ).

Ciprian A. Tudor Hsu-Robbins theorem for the correlated sequences



Plan
Classical Hsu-Robbins theorem

Variations of the fractional Brownian motion
Multiple stochastic integrals

Hsu-Robbins theorem for the increments of the fBm
Moving averages

In order to apply the same techniques, we need the speed of
convergence of ZN = cSN/

√
N to the normal law, that means, we

need to bound

sup
z∈R
|P(ZN ≤ z)− P(Z ≤ z)|
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we will evaluate the quantity

E

((
1− q−1 ‖DZN‖2H

)2
)
.

(this is the bound obtained via Malliavin calculus).
We have

DtZN = Dt

(
1

σ
√

N

N∑
n=1

Iq
(
f ⊗q
n

))
=

q

σ
√

N

N∑
n=1

Iq−1

(
f ⊗q−1
n

)
fn(t)

and

‖DZN‖2H =
q2

σ2N

N∑
k,l=1

Iq−1

(
f ⊗q−1
k

)
Iq−1

(
f ⊗q−1
l

)
〈fk , fl〉H .(16)
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The multiplication formula between multiple stochastic integrals
gives us that

Iq−1

(
f ⊗q−1
k

)
Iq−1

(
f ⊗q−1
l

)
=

q−1∑
r=0

r !

(
q − 1

r

)2

I2q−2−2r

(
f ⊗q−1−r
k ⊗̃f ⊗q−1−r

l

)
〈fk , fl〉rH .

By replacing in (16), we obtain

‖DZN‖2H

=
q2

σ2N

q−1∑
r=0

r !

(
q − 1

r

)2 N∑
k,l=1

I2q−2−2r

(
f ⊗q−1−r
k ⊗̃f ⊗q−1−r

l

)
〈fk , fl〉r+1

H
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Theorem

Under the condition q > (2β − 1)−1, ZN converges in law towards
Z ∼ N (0, 1). Moreover, there exists a constant Cβ, depending
uniquely on β, such that, for any N ≥ 1,

sup
z∈R
|P(ZN ≤ z)− P(Z ≤ z)| ≤ Cβ

 N
q
2
+ 1

2
−qβ if β ∈

(
1
2 ,

q
2q−2

]
N

1
2
−β if β ∈

[
q

2q−2 , 1
)
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f1(ε) =
∑
N≥1

1

N
P (|SN | > εN) .

when q > 1
2β−1

f1(ε) =
∑
N≥1

1

N
P

(
σ−1 1√

N
|SN | >

ε
√

N

σ

)

=
∑
N≥1

1

N
P

(
|Z | > ε

√
N

σ

)

+
∑
N≥1

1

N

[
P

(
σ−1 1√

N
|SN | >

ε
√

N

σ

)
− P

(
|Z | > ε

√
N

σ

)]

where Z denotes a standard normal random variable.
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Proposition

When q > 1
2β−1 ,

lim
ε→0

1

− log(ε)
f1(ε) = 2

and when q < 1
2β−1 then

lim
ε→0

1

− log(ε)
f2(ε) =

1

1 + q
2 − βq

.

It is also possible to give Hsu-Robbins type results, meaning to find
the asymptotic behavior as ε→ 0 of

g1(ε) =
∑
N≥1

P (|SN | > εN)

when q > 1
2β−1
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