Infinite variance stable limits for dependent sequences

Thomas Mikosch
University of Copenhagen www.math.ku.dk/~mikosch
Joint work with

Katarzyna Bartkiewicz, Adam Jakubowski, Olivier Wintenberger

[^0]- For an iid real-valued sequence $\left(X_{t}\right)$ consider the partial sums

$$
S_{n}=X_{1}+\cdots+X_{n}, n \geq 1
$$

- Using classical limit theory for sums of independent random variables, e.g. Gnedenko, Kolmogorov (1954), Feller (1971), Petrov (1975, 1996), one can show that there exist sequences $0<a_{n} \rightarrow \infty$ and $b_{n} \in \mathbb{R}$ and a random variable Y with non-degenerate law \boldsymbol{H} such that

$$
a_{n}^{-1}\left(S_{n}-b_{n}\right) \xrightarrow{d} Y \sim H
$$

if and only if either $f(x)=E X^{2} I_{\{|X| \leq x\}}, x>0$, is slowly varying or X is regularly varying with index $\alpha \in(0,2)$, i.e., there exist $p, q \geq 0$ with $p+q=1$ and a slowly varying
function L such that

$$
P(X>x) \sim p \frac{L(x)}{x^{\alpha}} \quad \text { and } \quad P(X \leq-x) \sim q \frac{L(x)}{x^{\alpha}}
$$

- $\boldsymbol{H}=H_{\alpha}, \boldsymbol{\alpha} \in(0,2]$, is α-stable in the convolution sense, i.e. for any $n \geq 2$ and an iid sequence $\left(Y_{t}\right)$ with common distribution H, there exist $c_{n}>0$ and $d_{n} \in \mathbb{R}$ such that

$$
c_{n}^{-1}\left(Y_{1}+\cdots+Y_{n}-d_{n}\right) \stackrel{d}{=} Y
$$

- Moreover, for $\alpha \in(0,2),\left(a_{n}\right)$ can be chosen such that

$$
P\left(|X|>a_{n}\right) \sim n^{-1} \text { and } b_{n}=n E X I_{\left\{|X| \leq a_{n}\right\}}
$$

- Classical proofs are based on characteristic function arguments.
- An alternative way of proving this result goes back to LePage,

Woodroofe, Zinn (1981), Resnick (1986); see also Resnick (2007).

- Since regular variation of X for any $\alpha>0$ is equivalent to the weak convergence of the point processes

$$
\boldsymbol{N}_{n}=\sum_{t=1}^{n} \varepsilon_{a_{n}^{-1} X_{t}} \xrightarrow{d} N=\sum_{t=1}^{\infty} \varepsilon_{J_{t}} \sim \operatorname{PRM}(\mu)
$$

for some Poisson random measure N with mean measure μ on $\overline{\mathbb{R}} \backslash\{0\}$ given by

$$
\mu(d x)=\left[p x^{-\alpha} \boldsymbol{I}_{\{x>0\}}+q|x|^{-\alpha} I_{\{x<0\}}\right] d x .
$$

- The mapping $T_{\epsilon}: M_{p} \rightarrow \mathbb{R}$ given by

$$
T_{\epsilon}(m)=T_{\epsilon}\left(\sum_{t} \varepsilon_{j_{t}}\right)=\sum_{t} j_{t} I_{\left\{\left|j_{t}\right|>\epsilon\right\}}
$$

is a.s. continuous relative to the distribution of N for every $\epsilon>0$.

- Hence

$$
T_{\epsilon}\left(N_{n}\right)=\sum_{t=1}^{n}\left(a_{n}^{-1} X_{t}\right) I_{\left(\left\{\left|a_{n}^{-1} X_{t}\right|>\epsilon\right\}\right.} \stackrel{d}{\rightarrow} T_{\epsilon}(N)=\sum_{t=1}^{\infty} J_{t} I_{\left\{\left|J_{t}\right|>\epsilon\right\}}
$$

- For $\alpha \in(0,2)$ the right-hand side has a limit as $\epsilon \downarrow 0$ (with additional centering for $\alpha \in[1,2)$): series representation of an α-stable random variable.
- Example. Assume $p=1$ (X is totally skewed to the right) and $\alpha \in(0,1)$. Then $N=\sum_{t=1}^{\infty} \varepsilon_{\Gamma_{i}^{-1 / \alpha}}$, where $0<\Gamma_{1}<\Gamma_{2}<\cdots$ are the points of a homogeneous Poisson process. Hence

$$
T_{\epsilon}(N)=\sum_{t=1}^{\infty} \Gamma_{t}^{-1 / \alpha} I_{\left\{\left|\Gamma_{t}^{-1 / \alpha}\right|>\epsilon\right\}} \xrightarrow{\text { a.s. }} \sum_{t=1}^{\infty} \Gamma_{t}^{-1 / \alpha} \quad \text { as } \epsilon \downarrow 0 .
$$

which represents an α-stable random variable.

- It finally suffices to show that
$\lim _{\epsilon \downarrow 0} \limsup _{n \rightarrow \infty} P\left(\left|a_{n}^{-1} S_{n}-T_{\epsilon}\left(N_{n}\right)-E(\cdot)\right|>\delta\right)=0, \quad \delta>0$,
e.g. by showing that $\operatorname{var}\left(a_{n}^{-1} S_{n}-T_{\epsilon}\left(N_{n}\right)\right)$ can be made small.

Linear processes.

- Recall the definition of a linear process

$$
\begin{equation*}
X_{t}=\sum_{j=0}^{\infty} \psi_{j} Z_{t-j}, \quad t \in \mathbb{Z} \tag{1}
\end{equation*}
$$

for sequences of suitable constants $\psi_{j}, j \in \mathbb{Z}$, and an iid sequence $\left(Z_{t}\right)$.

- If Z is regularly varying with index $\alpha>0$, i.e.,

$$
P(Z>x) \sim p \frac{L(x)}{x^{\alpha}} \quad \text { and } \quad P(Z \leq-x) \sim q \frac{L(x)}{x^{\alpha}}
$$

and the series (1) converges a.s. then \boldsymbol{X} is regularly varying with index $\alpha>0 .{ }^{2}$

[^1]- In a series of papers, Davis and Resnick $(1985,1986)$ proved that the sequence of the partial sums $\left(a_{n}^{-1} S_{n}\right)$ has a stable limit for $\alpha \in(0,2)$. They also showed the joint convergence for

$$
\sum_{t=1}^{n}\left(a_{n}^{-1} \boldsymbol{X}_{t}, a_{n}^{-1} \boldsymbol{X}_{t}^{2}, \widetilde{a}_{n}^{-1} \boldsymbol{X}_{t} \boldsymbol{X}_{t+1}, \ldots, \widetilde{\boldsymbol{a}}_{n}^{-1} \boldsymbol{X}_{t} \boldsymbol{X}_{t+h}\right)-\mathrm{b}_{n}
$$

towards a mixed stable distribution. This was achieved by using the weak convergence of the underlying point processes and a continuous mapping argument.

- Phillips and Solo (1992) used the structure of a linear process to show that, under general weak dependence conditions,

$$
a_{n}^{-1}\left(\sum_{t=1}^{n} X_{t}-\sum_{j=0}^{n} \psi_{j} \sum_{t=1}^{n} Z_{t}\right) \xrightarrow{P} 0
$$

thus the stable CLT for $\left(X_{t}\right)$ follows from the one for $\left(Z_{t}\right)$.

- Kasahara, Maejima, Vervaat (1988) also considered stable FCLTs in the case of strong dependence.

Mixing conditions.

- Let $\left(X_{t}\right)$ be a strictly stationary sequence with partial sum process $S_{n}=X_{1}+\cdots+X_{n}, n \geq 1$.
- Davis and Hsing (1995) proved stable limit theory by using the point process approach.
- Davis and Hsing (1995) require the mixing condition $\mathcal{A}\left(a_{n}\right)$ in terms of the point processes

$$
N_{n m}=\sum_{t=1}^{m} \varepsilon_{a_{n}^{-1} X_{t}} \quad \text { and } \quad N_{n}=N_{n n}=\sum_{t=1}^{n} \varepsilon_{a_{n}^{-1} X_{t}}
$$

- They require closeness of the Laplace functionals

$$
\boldsymbol{E} \mathrm{e}^{-\int f d N_{n}}-\left(\boldsymbol{E} \mathrm{e}^{-\int f d N_{n m}}\right)^{k_{n}} \rightarrow \mathbf{0}
$$

where $m=m_{n} \rightarrow \infty, k_{n}=[n / m] \rightarrow \infty$.

- Bartkiewicz et al. (2010) prove stable limit theory by using characteristic functions.
- Bartkiewicz et al. (2010) require a mixing condition in terms of the characteristic functions

$$
\varphi_{n}(x)=E \mathrm{e}^{i x a_{n}^{-1} S_{n}} \quad \text { and } \quad \varphi_{n m}(x)=E \mathrm{e}^{i x a_{n}^{-1} S_{m}}
$$

- They require closeness of the characteristic functions

$$
\varphi_{n}(x)-\left(\varphi_{n m}(x)\right)^{k_{n}} \rightarrow 0
$$

where $m=m_{n} \rightarrow \infty, k_{n}=[n / m] \rightarrow \infty$.

- Conditions of this type as well as $\mathcal{A}\left(a_{n}\right)$ follow from strong mixing with suitable rates.
- These conditions imply that the corresponding limits, if they exist, are infinitely divisible.

Conditions on the tails.

- To ensure convergence to an infinite variance stable limit, we require regular variation of the finite-dimensional distributions of $\left(X_{t}\right)$ as in Davis and Hsing (1995) and Bartkiewicz et al. (2010): ${ }^{3}$ There exist $\alpha \geq 0$ and, for every $h \geq 1$, a non-constant vector Θ_{h} on the unit sphere of \mathbb{R}^{h} such that for $Y_{h}=\left(X_{1}, \ldots, X_{h}\right)$, as $x \rightarrow \infty$,

$$
\frac{\boldsymbol{P}\left(\left|\mathrm{Y}_{h}\right|>x \boldsymbol{x}\right)}{\boldsymbol{P}\left(\left|\mathrm{Y}_{h}\right|>x\right)} \rightarrow c^{-\alpha}, \quad c>0
$$

and

$$
\boldsymbol{P}\left(\mathbf{Y}_{h} /\left|\mathbf{Y}_{h}\right| \in \cdot| | \mathbf{Y}_{h} \mid>\boldsymbol{x}\right) \xrightarrow{w} \boldsymbol{P}\left(\Theta_{h} \in \cdot\right) .
$$

[^2]- We say that $\left(X_{t}\right)$ is regularly varying with index $\alpha>0$.
- An equivalent definition is the following: for every $h \geq 1$, there exists a non-null Radon measure μ_{h} on $\overline{\mathbb{R}}^{h} \backslash\{0\}$ such that

$$
\boldsymbol{n} \boldsymbol{P}\left(\boldsymbol{a}_{n}^{-1} \mathbf{Y}_{h} \in \cdot\right) \xrightarrow{v} \boldsymbol{\mu}_{h}(\cdot),
$$

where $\left(a_{n}\right)$ satisfies $P\left(|X|>a_{n}\right) \sim n^{-1}$.

- The measure μ_{h} satisfies $\mu_{h}(t A)=t^{-\alpha} \mu_{h}(A), t>0$, for some $\alpha \geq 0$.
- Examples. Infinite variance stable stationary processes.

ARMA/linear processes with iid regularly varying noise.
Stochastic recurrence equations $\boldsymbol{X}_{t}=\boldsymbol{A}_{t} \boldsymbol{X}_{t-1}+\boldsymbol{B}_{t}$ with iid non-negative $\left(\left(\boldsymbol{A}_{t}, \boldsymbol{B}_{t}\right)\right)$ Kesten (1973), Goldie (1991).

GARCH processes $X_{t}=\sigma_{t} Z_{t}$ with iid noise $\left(Z_{t}\right)$ with infinite support.

Stochastic volatility processes with regularly varying noise $\left(Z_{t}\right)$.
Transformed Gaussian stationary sequence such that the one-dimensional marginals are regularly varying.

- If $\left(X_{t}\right)$ is regularly varying with index $\alpha>0$ so are the linear combinations of any finite segment of this sequence: for A bounded away from zero with a smooth boundary,

$$
n P\left(a_{n}^{-1} S_{d} \in A\right) \rightarrow \mu_{d}\left(\left\{\mathrm{x} \in \mathbb{R}^{d}: x_{1}+\cdots+x_{d} \in A\right\}\right)
$$

- In particular, for $d \geq 1$,
$P\left(S_{d}>x\right) \sim p(d) P(|X|>x) \quad$ and $\quad P\left(S_{d} \leq-x\right) \sim q(d) P(|X|>x)$.
- $(p(d))_{d \geq 1}$ and $(q(d))_{d \geq 1}$ measure the strength of dependence in $\left(X_{t}\right)$ with respect to the tails of partial sums.
- Example. For $\left(X_{t}\right)$ iid and $X>0, P\left(S_{d}>x\right) \sim d P(X>x)$.

$$
\text { For } X_{t}=X>0, P\left(S_{d}>x\right)=P(d X>x) \sim d^{\alpha} P(X>x)
$$

Assumptions.

- The strictly stationary sequence $\left(X_{t}\right)$ is mixing in the sense

$$
\varphi_{n}(x)-\left(\varphi_{n m}(x)\right)^{k_{n}} \rightarrow 0, \quad x \in \mathbb{R}
$$

where $m=m_{n} \rightarrow \infty, k_{n}=[n / m] \rightarrow \infty$.

- $\left(X_{t}\right)$ is regularly varying with index $\alpha \in(0,2)$
- An anti-clustering and a centering condition hold.
- The following limits exist ${ }^{4}$
(Jak) $\quad p=\lim _{d \rightarrow \infty}[p(d)-p(d-1)] \quad$ and $\quad q=\lim _{d \rightarrow \infty}[q(d)-q(d-1)]$.

[^3]- Then $p, q \geq 0$ and for $\left(a_{n}\right)$ with $P\left(|X|>a_{n}\right) \sim n^{-1}$, $a_{n}^{-1} S_{n} \xrightarrow{d} Y_{\alpha}$, where Y_{α} is α-stable with characteristic function $\psi_{\alpha}{ }^{5}$ given by
$-\log \psi_{\alpha}(x)$
$=|x|^{\alpha} \frac{\Gamma(2-\alpha)}{1-\alpha}((p+q) \cos (\pi \alpha / 2)-i \operatorname{sign}(x)(p-q) \sin (\pi \alpha / 2))$
$=\chi_{\alpha}(x, p, q), \quad x \in \mathbb{R}$.

[^4]- The condition (Jak) implies that $p=\lim _{d \rightarrow \infty} d^{-1} p(d)$ and $q=\lim _{d \rightarrow \infty} d^{-1} q(d)$ exist.
- Examples. m_{0}-dependence: $p=p\left(m_{0}+1\right)-p\left(m_{0}\right)$, $q=q\left(m_{0}+1\right)-q\left(m_{0}\right)$.

Stochastic volatility model: $X_{t}=\sigma_{t} Z_{t}$ with stationary Gaussian $\log \sigma_{t}$ and iid regularly varying $\left(Z_{t}\right): p=d p-(d-1) p$ and $q=d q-(d-1) q$.

Stochastic recurrence equations: $X_{t}=A_{t} X_{t-1}+B_{t}$ with iid non-negative $\left(\left(A_{t}, B_{t}\right)\right)$. Let $E\left[A^{\kappa}\right]=1$ have the (unique) solution $\alpha>0$. Then $\left(X_{t}\right)$ is regularly varying with index α
and

$$
\boldsymbol{P}(\boldsymbol{X}>x) \sim c_{0} x^{-\alpha}, \quad x \rightarrow \infty
$$

- With $\Pi_{t}=A_{1} \cdots A_{t}, t \geq 1$,

$$
\left(\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{d}\right)=\boldsymbol{X}_{0}\left(\Pi_{1}, \ldots, \Pi_{d}\right)+\boldsymbol{R}_{d}
$$

where X_{0} is independent of $R_{d}, \Pi_{1}, \ldots, \Pi_{d}$.

- Hence, with $T_{d}=\sum_{i=1}^{d} \Pi_{i}$, by a result of Breiman (1965)

$$
P\left(S_{d}>x\right) \sim P\left(X_{0} T_{d}>x\right) \sim P\left(X_{0}>x\right) E\left[T_{d}^{\alpha}\right]
$$

and $p(d)=E\left[T_{d}^{\alpha}\right]$. Since $E\left[A^{\alpha}\right]=1$,

$$
\begin{aligned}
p(d+1)-p(d) & =E\left[T_{d+1}^{\alpha}\right]-E\left[T_{d}^{\alpha}\right]=E\left[A_{d+1}^{\alpha}\left(1+T_{d}\right)^{\alpha}\right]-E\left[T_{d}^{\alpha}\right] \\
& =E\left[\left(1+T_{d}\right)^{\alpha}-T_{d}^{\alpha}\right] \rightarrow E\left[\left(1+T_{\infty}\right)^{\alpha}-T_{\infty}^{\alpha}\right]
\end{aligned}
$$

- Although $E\left[T_{\infty}^{\alpha}\right]=\infty$,

$$
d^{-1} E\left[T_{d}^{\alpha}\right]=E\left[d^{-1 / \alpha} T_{d}\right]^{\alpha} \rightarrow E\left[\left(1+T_{\infty}\right)^{\alpha}-T_{\infty}^{\alpha}\right]<\infty .
$$

- Squared GARCH processes can be embedded in stochastic
recurrence equations. Similar results hold for $\left(\boldsymbol{X}_{t}^{2}\right)$ and $\left(\sigma_{t}^{2}\right)$ and also for $\left(\boldsymbol{X}_{\boldsymbol{t}}\right)$.

Main idea of proof

- In view of the mixing condition it follows that $\left(a_{n}^{-1} S_{n}\right)$ has the same limit as $\left(a_{n}^{-1} \sum_{i=1}^{m} S_{m i}\right)$, where $S_{m i}, i=1, \ldots, k_{n}$, are iid copies of S_{m}.
- For this triangular array, it suffices to show that
$k_{n}\left(\varphi_{n m}(x)-1\right)=k_{n} \log \varphi_{n m}(x)+o(1) \rightarrow \log \psi_{\alpha}(x)=-\chi_{\alpha}(x, p, q)$.
- Key lemma. Under regular variation of $\left(\boldsymbol{X}_{t}\right)$ and with the anti-clustering condition,
$\lim _{d \rightarrow \infty} \limsup _{n \rightarrow \infty}\left|k_{n}\left(\varphi_{n m}(x)-1\right)-n\left(\varphi_{n d}(x)-\varphi_{n, d-1}(x)\right)\right|=0, \quad x \in \mathbb{R}$.
- Under regular variation of S_{d},

$$
n\left(\varphi_{n d}(x)-1\right) \rightarrow-\chi_{\alpha}(x, p(d), q(d)), \quad x \in \mathbb{R}
$$

$$
\begin{aligned}
& \chi_{\alpha}(x, p(d), q(d))-\chi_{\alpha}(x, p(d-1), q(d-1)) \\
& \quad=\chi_{\alpha}(x, p(d)-p(d-1), q(d)-q(d-1)) \\
& \quad \rightarrow \chi_{\alpha}(x, p, q)
\end{aligned}
$$

RELATED work

- Balan and Louhichi (2009) use the point process process approach for partial sums of triangular arrays of dependent random variables to show convergence towards infinitely divisible laws.
- Buraczewski, Damek, Guivarc'h $(2009,2010)$ prove limit theory for multivariate stochastic recurrence equations $X_{t}=A_{t} X_{t-1}+B_{t}$ without extra mixing conditions.
- Tyran-Kamińska (2010) proves a FCLT with stable Lévy motion under the condition

$$
P\left(\left|X_{j}\right|>x| | X_{0} \mid>x\right) \rightarrow 0, \quad j \geq 1
$$

which is necessary under the J_{1}-topology.

- Basrak, Krizmanić and Segers (2010) prove a FCLT with stable Lévy motion in the M_{1}-topology under $\mathcal{A}\left(a_{n}\right)$ and using the point process approach.

Figure 1. Til lykke.

[^0]: ${ }^{1}$ Paris, June 22, 2010

[^1]: ${ }^{2}$ The converse is not true in general; see Jacobsen, Mikosch, Rosiński, Samorodnitsky (2009).

[^2]: ${ }^{3}$ Regular variation is not necessary for partial sum convergence of a strictly stationary sequence; Surgailis (2004), Gouëzel (2004)

[^3]: ${ }^{4}$ This condition was introduced in Jakubowski $(1993,1997)$.

[^4]: ${ }^{5}$ Shown for $\alpha \neq 1$ only.

