Infinite variance stable limits for dependent sequences

Thomas Mikosch

University of Copenhagen www.math.ku.dk/~mikosch

Joint work with Katarzyna Bartkiewicz, Adam Jakubowski, Olivier Wintenberger

¹Paris, June 22, 2010

STABLE LIMITS FOR AN IID SEQUENCE

- For an iid real-valued sequence (X_t) consider the partial sums $S_n = X_1 + \dots + X_n, n \ge 1.$
- Using classical limit theory for sums of independent random variables, e.g. Gnedenko, Kolmogorov (1954), Feller (1971), Petrov (1975, 1996), one can show that there exist sequences $0 < a_n \to \infty$ and $b_n \in \mathbb{R}$ and a random variable Y with non-degenerate law H such that

 $a_n^{-1}(S_n-b_n) \stackrel{d}{
ightarrow} Y \sim H$

if and only if either $f(x) = EX^2 I_{\{|X| \le x\}}$, x > 0, is slowly varying or X is regularly varying with index $\alpha \in (0, 2)$, i.e., there exist $p, q \ge 0$ with p + q = 1 and a slowly varying function L such that

$$P(X>x)\sim prac{L(x)}{x^lpha} \quad ext{and} \quad P(X\leq -x)\sim qrac{L(x)}{x^lpha},$$

• $H = H_{\alpha}, \ \alpha \in (0, 2]$, is α -stable in the convolution sense, i.e. for any $n \geq 2$ and an iid sequence (Y_t) with common distribution H, there exist $c_n > 0$ and $d_n \in \mathbb{R}$ such that

$$c_n^{-1}(Y_1+\cdots+Y_n-d_n)\stackrel{d}{=} Y$$
 .

- Moreover, for $\alpha \in (0,2)$, (a_n) can be chosen such that $P(|X|>a_n)\sim n^{-1}$ and $b_n=n\,EXI_{\{|X|\leq a_n\}}.$
- Classical proofs are based on characteristic function arguments.
- An alternative way of proving this result goes back to LePage,

Woodroofe, Zinn (1981), Resnick (1986); see also Resnick (2007).

• Since regular variation of X for any $\alpha > 0$ is equivalent to the

weak convergence of the point processes

$$N_n = \sum_{t=1}^n arepsilon_{a_n^{-1}X_t} \stackrel{d}{ o} N = \sum_{t=1}^\infty arepsilon_{J_t} \sim \mathrm{PRM}(\mu)$$

for some Poisson random measure N with mean measure μ on $\overline{\mathbb{R}} \setminus \{0\}$ given by

$$\mu(dx) = [p \, x^{-lpha} I_{\{x>0\}} + q \, |x|^{-lpha} I_{\{x<0\}}] \, dx \, .$$

• The mapping $T_{\epsilon}: M_p \to \mathbb{R}$ given by

$$T_\epsilon(m) = T_\epsilon(\sum_t arepsilon_{j_t}) = \sum_t j_t I_{\{|j_t| > \epsilon\}}$$

is a.s. continuous relative to the distribution of N for every $\epsilon > 0$.

• Hence

$$T_\epsilon(N_n) = \sum_{t=1}^n (a_n^{-1}X_t) I_{(\{|a_n^{-1}X_t| > \epsilon\}} \stackrel{d}{ o} T_\epsilon(N) = \sum_{t=1}^\infty J_t I_{\{|J_t| > \epsilon\}} \,.$$

- For $\alpha \in (0, 2)$ the right-hand side has a limit as $\epsilon \downarrow 0$ (with additional centering for $\alpha \in [1, 2)$): series representation of an α -stable random variable.
- Example. Assume p = 1 (X is totally skewed to the right) and $\alpha \in (0, 1)$. Then $N = \sum_{t=1}^{\infty} \varepsilon_{\Gamma_i^{-1/\alpha}}$, where $0 < \Gamma_1 < \Gamma_2 < \cdots$ are the points of a homogeneous Poisson process. Hence

$$T_\epsilon(N) = \sum_{t=1}^\infty \Gamma_t^{-1/lpha} I_{\{|\Gamma_t^{-1/lpha}| > \epsilon\}} \stackrel{\mathrm{a.s.}}{ o} \sum_{t=1}^\infty \Gamma_t^{-1/lpha} \quad \mathrm{as} \,\, \epsilon \downarrow 0 \,.$$

which represents an α -stable random variable.

• It finally suffices to show that

 $\lim_{\epsilon \downarrow 0} \limsup_{n o \infty} P(|a_n^{-1}S_n - T_\epsilon(N_n) - E(\cdot)| > \delta) = 0\,, \quad \delta > 0\,,$

e.g. by showing that $\operatorname{var}(a_n^{-1}S_n - T_\epsilon(N_n))$ can be made small.

GENERALIZATIONS TO DEPENDENT SEQUENCES

Linear processes.

• Recall the definition of a linear process

(1)
$$X_t = \sum_{j=0}^{\infty} \psi_j Z_{t-j}, \quad t \in \mathbb{Z},$$

for sequences of suitable constants ψ_j , $j \in \mathbb{Z}$, and an iid sequence (Z_t) .

• If Z is regularly varying with index $\alpha > 0$, i.e.,

$$P(Z>x)\sim prac{L(x)}{x^lpha} \quad ext{and} \quad P(Z\leq -x)\sim qrac{L(x)}{x^lpha},$$

and the series (1) converges a.s. then X is regularly varying with index $\alpha > 0.^2$

 $^{^{2}}$ The converse is not true in general; see Jacobsen, Mikosch, Rosiński, Samorodnitsky (2009).

- In a series of papers, Davis and Resnick (1985, 1986) proved that the sequence of the partial sums $(a_n^{-1}S_n)$ has a stable limit for $\alpha \in (0, 2)$. They also showed the joint convergence for $\sum_{t=1}^n \left(a_n^{-1}X_t, a_n^{-1}X_t^2, \tilde{a}_n^{-1}X_tX_{t+1}, \dots, \tilde{a}_n^{-1}X_tX_{t+h}\right) \mathbf{b}_n$ towards a mixed stable distribution. This was achieved by
 - using the weak convergence of the underlying point processes and a continuous mapping argument.
- Phillips and Solo (1992) used the structure of a linear process to show that, under general weak dependence conditions,

$$a_n^{-1}\left(\sum_{t=1}^n X_t - \sum_{j=0}^n \psi_j \sum_{t=1}^n Z_t
ight) \stackrel{P}{
ightarrow} 0\,,$$

thus the stable CLT for (X_t) follows from the one for (Z_t) .

• Kasahara, Maejima, Vervaat (1988) also considered stable FCLTs in the case of strong dependence.

Mixing conditions.

- Let (X_t) be a strictly stationary sequence with partial sum process $S_n = X_1 + \cdots + X_n, n \ge 1$.
- Davis and Hsing (1995) proved stable limit theory by using the point process approach.
- Davis and Hsing (1995) require the mixing condition $\mathcal{A}(a_n)$ in terms of the point processes

$$N_{nm} = \sum_{t=1}^m arepsilon_{a_n^{-1}X_t} \quad ext{and} \qquad N_n = N_{nn} = \sum_{t=1}^n arepsilon_{a_n^{-1}X_t}.$$

• They require closeness of the Laplace functionals

$$E\mathrm{e}^{-\int f dN_n} - \left(E\mathrm{e}^{-\int f dN_{nm}}
ight)^{k_n} o 0\,,$$

where $m=m_n
ightarrow\infty,\,k_n=[n/m]
ightarrow\infty.$

- Bartkiewicz et al. (2010) prove stable limit theory by using characteristic functions.
- Bartkiewicz et al. (2010) require a mixing condition in terms of the characteristic functions

$$arphi_n(x) = E \mathrm{e}^{i x a_n^{-1} S_n} \quad \mathrm{and} \quad arphi_{nm}(x) = E \mathrm{e}^{i x a_n^{-1} S_m} \,.$$

• They require closeness of the characteristic functions

$$arphi_n(x) - \left(arphi_{nm}(x)
ight)^{k_n} o 0 \, ,$$

where $m=m_n
ightarrow\infty,\,k_n=[n/m]
ightarrow\infty.$

• Conditions of this type as well as $\mathcal{A}(a_n)$ follow from strong mixing with suitable rates.

- 12
- These conditions imply that the corresponding limits, if they exist, are *infinitely divisible*.

Conditions on the tails.

• To ensure convergence to an infinite variance stable limit, we require regular variation of the finite-dimensional distributions of (X_t) as in Davis and Hsing (1995) and Bartkiewicz et al. (2010):³ There exist $\alpha \ge 0$ and, for every $h \ge 1$, a non-constant vector Θ_h on the unit sphere of \mathbb{R}^h such that for $Y_h = (X_1, \ldots, X_h)$, as

$$egin{aligned} x o\infty, \ & rac{P(|\mathrm{Y}_h|>x\,c)}{P(|\mathrm{Y}_h|>x)} o c^{-lpha}\,, \quad c>0\,, \end{aligned}$$

and

$$P(\mathrm{Y}_h / |\mathrm{Y}_h| \in \cdot \mid |\mathrm{Y}_h| > x) \stackrel{w}{ o} P(\Theta_h \in \cdot)$$
 .

 $^{^{3}}$ Regular variation is not necessary for partial sum convergence of a strictly stationary sequence; Surgailis (2004), Gouëzel (2004)

- We say that (X_t) is regularly varying with index $\alpha > 0$.
- An equivalent definition is the following: for every $h \ge 1$, there exists a non-null Radon measure μ_h on $\overline{\mathbb{R}}^h \setminus \{0\}$ such that

 $n \, P(a_n^{-1} \mathrm{Y}_h \in \cdot) \stackrel{v}{
ightarrow} \mu_h(\cdot) \, ,$

where (a_n) satisfies $P(|X| > a_n) \sim n^{-1}$.

• The measure μ_h satisfies $\mu_h(tA) = t^{-\alpha}\mu_h(A), t > 0$, for some

$$lpha \ge 0.$$

- Examples. Infinite variance stable stationary processes. ARMA/linear processes with iid regularly varying noise. Stochastic recurrence equations $X_t = A_t X_{t-1} + B_t$ with iid non-negative $((A_t, B_t))$ Kesten (1973), Goldie (1991). GARCH processes $X_t = \sigma_t Z_t$ with iid noise (Z_t) with infinite support.
 - Stochastic volatility processes with regularly varying noise (Z_t) . Transformed Gaussian stationary sequence such that the one-dimensional marginals are regularly varying.

• If (X_t) is regularly varying with index $\alpha > 0$ so are the linear combinations of any finite segment of this sequence: for Abounded away from zero with a smooth boundary,

 $n \, P(a_n^{-1}S_d \in A)
ightarrow \mu_d(\{\mathrm{x} \in \mathbb{R}^d: x_1 + \dots + x_d \in A\}) \, .$

• In particular, for $d \ge 1$,

 $P(S_d > x) \sim p(d) P(|X| > x) \quad ext{and} \quad P(S_d \leq -x) \sim q(d) P(|X| > x) \,.$

- $(p(d))_{d\geq 1}$ and $(q(d))_{d\geq 1}$ measure the strength of dependence in (X_t) with respect to the tails of partial sums.
- Example. For (X_t) iid and X > 0, $P(S_d > x) \sim d P(X > x)$.

For $X_t = X > 0$, $P(S_d > x) = P(dX > x) \sim d^{\alpha} P(X > x)$.

MAIN RESULT

Assumptions.

• The strictly stationary sequence (X_t) is mixing in the sense

$$arphi_n(x) - ig(arphi_{nm}(x)ig)^{k_n} o 0\,, \quad x\in \mathbb{R}\,,$$

where $m=m_n
ightarrow\infty,\,k_n=[n/m]
ightarrow\infty.$

- (X_t) is regularly varying with index $lpha \in (0,2)$
- An anti-clustering and a centering condition hold.
- The following limits exist⁴

 $(\textbf{Jak}) \quad p = \lim_{d \to \infty} [p(d) - p(d-1)] \quad \text{and} \quad q = \lim_{d \to \infty} [q(d) - q(d-1)] \, .$

⁴This condition was introduced in Jakubowski (1993,1997).

• Then $p, q \ge 0$ and for (a_n) with $P(|X| > a_n) \sim n^{-1}$, $a_n^{-1}S_n \xrightarrow{d} Y_{\alpha}$, where Y_{α} is α -stable with characteristic function $\psi_{\alpha}{}^5$ given by

 $-\log\psi_lpha(x)$

$$=|x|^{lpha}rac{\Gamma(2-lpha)}{1-lpha}\left((p+q)\cos(\pilpha/2)-i\mathrm{sign}(x)\left(p-q
ight)\sin(\pilpha/2)
ight)$$

$$= \, \chi_lpha(x,p,q) \,, \quad x \in \mathbb{R} \,.$$

⁵Shown for $\alpha \neq 1$ only.

- The condition (Jak) implies that $p = \lim_{d\to\infty} d^{-1}p(d)$ and $q = \lim_{d\to\infty} d^{-1}q(d)$ exist.
- Examples. m_0 -dependence: $p = p(m_0 + 1) p(m_0)$,

$$q = q(m_0 + 1) - q(m_0).$$

Stochastic volatility model: $X_t = \sigma_t Z_t$ with stationary Gaussian log σ_t and iid regularly varying (Z_t) : p = dp - (d - 1)p and q = dq - (d - 1)q.

Stochastic recurrence equations: $X_t = A_t X_{t-1} + B_t$ with iid non-negative $((A_t, B_t))$. Let $E[A^{\kappa}] = 1$ have the (unique) solution $\alpha > 0$. Then (X_t) is regularly varying with index α and

$$P(X>x)\sim c_0\,x^{-lpha}\,,\quad x o\infty\,.$$

• With
$$\Pi_t = A_1 \cdots A_t, t \ge 1$$
,

$$(X_1,\ldots,X_d)=X_0\left(\Pi_1,\ldots,\Pi_d
ight)+R_d$$

where X_0 is independent of $R_d, \Pi_1, \ldots, \Pi_d$.

• Hence, with $T_d = \sum_{i=1}^d \Pi_i$, by a result of Breiman (1965)

 $P(S_d > x) \sim P(X_0 \, T_d > x) \sim P(X_0 > x) E[T_d^lpha]$

and $p(d) = E[T_d^{\alpha}]$. Since $E[A^{\alpha}] = 1$, $p(d+1) - p(d) = E[T_{d+1}^{\alpha}] - E[T_d^{\alpha}] = E[A_{d+1}^{\alpha}(1+T_d)^{\alpha}] - E[T_d^{\alpha}]$ $= E[(1+T_d)^{\alpha} - T_d^{\alpha}] \to E[(1+T_{\infty})^{\alpha} - T_{\infty}^{\alpha}].$ • Although $E[T^{\alpha}_{\infty}] = \infty$,

 $d^{-1}E[T^lpha_d]=E[d^{-1/lpha}T_d]^lpha
ightarrow E[(1+T_\infty)^lpha-T^lpha_\infty]<\infty\,.$

• Squared GARCH processes can be embedded in stochastic recurrence equations. Similar results hold for (X_t^2) and (σ_t^2) and also for (X_t) .

MAIN IDEA OF PROOF

- In view of the mixing condition it follows that $(a_n^{-1}S_n)$ has the same limit as $(a_n^{-1}\sum_{i=1}^m S_{mi})$, where S_{mi} , $i = 1, \ldots, k_n$, are iid copies of S_m .
- For this triangular array, it suffices to show that

 $k_n\left(arphi_{nm}(x)-1
ight)=k_n\,\logarphi_{nm}(x)+o(1)
ightarrow\log\psi_lpha(x)=-\chi_lpha(x,p,q)\,.$

• Key lemma. Under regular variation of (X_t) and with the anti-clustering condition,

 $\lim_{d o\infty} \limsup_{n o\infty} \left| k_n \left(arphi_{nm}(x) - 1
ight) - n \left(arphi_{nd}(x) - arphi_{n,d-1}(x)
ight)
ight| = 0\,, \quad x\in\mathbb{R}\,.$

• Under regular variation of S_d ,

$$n\left(arphi_{nd}(x)-1
ight)
ightarrow -\chi_lpha(x,p(d),q(d)), \quad x\in\mathbb{R}\,,$$

$$egin{aligned} \chi_lpha(x,p(d),q(d)) &- \chi_lpha(x,p(d-1),q(d-1)) \ &= \chi_lpha(x,p(d)-p(d-1),q(d)-q(d-1)) \ & o \chi_lpha(x,p,q) \end{aligned}$$

Related work

- Balan and Louhichi (2009) use the point process process approach for partial sums of triangular arrays of dependent random variables to show convergence towards infinitely divisible laws.
- Buraczewski, Damek, Guivarc'h (2009,2010) prove limit theory for multivariate stochastic recurrence equations $X_t = A_t X_{t-1} + B_t$ without extra mixing conditions.
- Tyran-Kamińska (2010) proves a FCLT with stable Lévy motion under the condition

$$P(|X_j|>x\mid |X_0|>x)
ightarrow 0\,,\quad j\geq 1\,,$$

which is necessary under the J_1 -topology.

• Basrak, Krizmanić and Segers (2010) prove a FCLT with stable Lévy motion in the M_1 -topology under $\mathcal{A}(a_n)$ and using the point process approach.

FIGURE 1. Til lykke.