Apprentissage, Noyaux et parcimonie

Janvier, 2009
Stat Im'09

Laboratoire d'Informatique, de Traitement de l'Information et des Systèmes

Stéphane Canu stephane.canu@litislab.eu

Roadmap

1 Kernels and the learning problem

- Two learning problems
- Kernelizing the linear regression
- Kernel machines: a definition

2 Tools: the functional framework

- In the beginning was the kernel

■ Kernel and hypothesis set
3 Kernel machines
■ Non sparse kernel machines
■ sparse kernel machines: SVM

- practical SVM

4 Conclusion

Optical character recognition

Example (The MNIST database)

- MNIST 1, data $=$ « image-label »
- $n=60,000 ; d=700 ;$ classes $=10$
- Kernel error rate $=0.56$ \%,
- Best error rate $=0.4$ \% .

[^0]
Implicit Surface Modelling

Example (Lucy ${ }^{2}$)

- 14 million points with normals.
- 364,982 compactly supported basis function centres.
- kernel regression with thin plate splines kernels

[^1]
Learning challenges: the size effect

kernel machines adress these three issues (up to a certain point regarding efficency)

the example of the linear least mean square

the linear model

$$
y_{i}=\sum_{j=1}^{d} \beta_{j} x_{i j}+\varepsilon_{i}, \quad i=1, n
$$

n observations and d variables; $d<n$

$$
\min _{\beta}=\sum_{i=1}^{n}\left(\sum_{j=1}^{d} x_{i j} \beta_{j}-y_{i}\right)^{2}=\|X \beta-Y\|^{2}
$$

Solution: $\widehat{\beta}=\left(X^{\top} X\right)^{-1} X^{\top} Y$

$$
f(\mathbf{x})=\mathbf{x}^{\top} \underbrace{\left(X^{\top} X\right)^{-1} X^{\top} Y}_{\widehat{\beta}}
$$

What is the influence of each example (X rows)?

The influence of the examples

for a new input x

$$
\begin{aligned}
f(\mathbf{x}) & =\mathbf{x}^{\top}\left(X^{\top} X\right)\left(X^{\top} X\right)^{-1} \underbrace{\left(X^{\top} X\right)^{-1} X^{\top} Y}_{\widehat{\beta}} \\
& =\mathbf{x}^{\top} X^{\top} \underbrace{X\left(X^{\top} X\right)^{-1}\left(X^{\top} X\right)^{-1} X^{\top} Y}_{\widehat{\alpha}}
\end{aligned}
$$

$$
f(\mathrm{x})=\sum_{j=1}^{d} \widehat{\beta}_{j} x_{j}
$$

from variables to examples

The influence of the examples

for a new input x

$$
\begin{aligned}
& f(\mathbf{x})=\mathbf{x}^{\top}\left(X^{\top} X\right)\left(X^{\top} X\right)^{-1} \underbrace{\left(X^{\top} X\right)^{-1} X^{\top} Y}_{\widehat{\beta}} \\
& =\mathbf{x}^{\top} X^{\top} \underbrace{X\left(X^{\top} X\right)^{-1}\left(X^{\top} X\right)^{-1} X^{\top} Y}_{\widehat{\alpha}}
\end{aligned}
$$

$$
\begin{aligned}
& f(\mathbf{x})=\sum_{j=1}^{d} \widehat{\beta}_{j} x_{j}=\sum_{i=1}^{n} \widehat{\alpha}_{i}\left(\mathbf{x}^{\top} \mathbf{x}_{i}\right)
\end{aligned}
$$

from variables to examples

$$
\underbrace{\widehat{\alpha}=X\left(X^{\top} X\right)^{-1} \widehat{\beta}}_{n \text { examples }} \quad \text { and } \quad \underbrace{\widehat{\beta}=X^{\top} \widehat{\alpha}}_{d \text { variables }}
$$

What if $d \geq n$?

Non linear case: dictionnary vs. kernel

in the non linear case: use a dictionary of functions

$$
\phi_{j}(\mathbf{x}), j=1, p \quad \text { with possibly } \quad p=\infty
$$

for instance polynomials, wavelets... (assume orthogonality)

$$
f(\mathbf{x})=\sum_{j=1}^{p} \widehat{\beta}_{j} \phi_{j}(\mathbf{x}) \quad \text { with } \quad \widehat{\beta}_{j}=\sum_{i=1}^{n} y_{i} \phi_{j}\left(\mathbf{x}_{i}\right)
$$

using linearity

$$
f(\mathbf{x})=\sum_{i=1}^{n} y_{i} \underbrace{\sum_{j=1}^{p} \phi_{j}\left(\mathbf{x}_{i}\right) \phi_{j}(\mathbf{x})}_{k\left(\mathbf{x}_{i}, \mathbf{x}\right)}
$$

Non linear case: dictionnary vs. kernel

in the non linear case: use a dictionary of functions

$$
\phi_{j}(\mathbf{x}), j=1, p \quad \text { with possibly } \quad p=\infty
$$

for instance polynomials, wavelets... (assume orthogonality)

$$
f(\mathbf{x})=\sum_{j=1}^{p} \widehat{\beta}_{j} \phi_{j}(\mathbf{x}) \quad \text { with } \quad \widehat{\beta}_{j}=\sum_{i=1}^{n} y_{i} \phi_{j}\left(\mathbf{x}_{i}\right)
$$

using linearity

$$
f(\mathbf{x})=\sum_{i=1}^{n} y_{i} \underbrace{\sum_{j=1}^{p} \phi_{j}\left(\mathbf{x}_{i}\right) \phi_{j}(\mathbf{x})}_{k\left(\mathbf{x}_{i}, \mathbf{x}\right)}
$$

$$
p \geq n \text { so what since } k\left(\mathbf{x}_{i}, \mathbf{x}\right)=\sum_{j=1}^{p} \phi_{j}\left(\mathbf{x}_{i}\right) \phi_{j}(\mathbf{x})
$$

closed form kernel: the quadratic kernel

The quadratic dictionary in \mathbb{R}^{d} :

$$
\begin{aligned}
\boldsymbol{\Phi}: \mathbb{R}^{d} & \rightarrow \mathbb{R}^{p=1+d+\frac{d(d+1)}{2}} \\
\mathbf{s} & \mapsto \boldsymbol{\Phi}=\left(1, s_{1}, s_{2}, \ldots, s_{d}, s_{1}^{2}, s_{2}^{2}, \ldots, s_{d}^{2}, \ldots, s_{i} s_{j}, \ldots\right)
\end{aligned}
$$

in this case
$\boldsymbol{\Phi}(\mathbf{s})^{\top} \boldsymbol{\Phi}(\mathbf{t})=1+s_{1} t_{1}+s_{2} t_{2}+\ldots+s_{d} t_{d}+s_{1}^{2} t_{1}^{2}+\ldots+s_{d}^{2} t_{d}^{2}+\ldots+s_{i} s_{j} t_{i} t_{j}+\ldots$

closed form kernel: the quadratic kernel

The quadratic dictionary in \mathbb{R}^{d} :

$$
\begin{aligned}
\boldsymbol{\Phi}: \quad \mathbb{R}^{d} & \rightarrow \mathbb{R}^{p=1+d+\frac{d(d+1)}{2}} \\
\mathbf{s} & \mapsto \boldsymbol{\Phi}=\left(1, s_{1}, s_{2}, \ldots, s_{d}, s_{1}^{2}, s_{2}^{2}, \ldots, s_{d}^{2}, \ldots, s_{i} s_{j}, \ldots\right)
\end{aligned}
$$

in this case
$\boldsymbol{\Phi}(\mathbf{s})^{\top} \boldsymbol{\Phi}(\mathbf{t})=1+s_{1} t_{1}+s_{2} t_{2}+\ldots+s_{d} t_{d}+s_{1}^{2} t_{1}^{2}+\ldots+s_{d}^{2} t_{d}^{2}+\ldots+s_{i} s_{j} t_{i} t_{j}+\ldots$
The quadratic kenrel: $\mathbf{s}, \mathbf{t} \in \mathbb{R}^{d}, \quad k(\mathbf{s}, \mathbf{t})=\left(\mathbf{s}^{\top} \mathbf{t}+1\right)^{2}$

$$
=1+2 \mathbf{s}^{\top} \mathbf{t}+\left(\mathbf{s}^{\top} \mathbf{t}\right)^{2}
$$

computes the dot product of the reweighted dictionary:
$\boldsymbol{\Phi}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{p=1+d+\frac{d(d+1)}{2}}$

$$
\mathbf{s} \mapsto \boldsymbol{\Phi}=\left(1, \sqrt{2} s_{1}, \sqrt{2} s_{2}, \ldots, \sqrt{2} s_{d}, s_{1}^{2}, s_{2}^{2}, \ldots, s_{d}^{2}, \ldots, \sqrt{2} s_{i} s_{j}, \ldots\right)
$$

closed form kernel: the quadratic kernel

The quadratic dictionary in \mathbb{R}^{d} :

$$
\begin{aligned}
\boldsymbol{\Phi}: \mathbb{R}^{d} & \rightarrow \mathbb{R}^{p=1+d+\frac{d(d+1)}{2}} \\
\mathbf{s} & \mapsto \boldsymbol{\Phi}=\left(1, s_{1}, s_{2}, \ldots, s_{d}, s_{1}^{2}, s_{2}^{2}, \ldots, s_{d}^{2}, \ldots, s_{i} s_{j}, \ldots\right)
\end{aligned}
$$

in this case
$\boldsymbol{\Phi}(\mathbf{s})^{\top} \boldsymbol{\Phi}(\mathbf{t})=1+s_{1} t_{1}+s_{2} t_{2}+\ldots+s_{d} t_{d}+s_{1}^{2} t_{1}^{2}+\ldots+s_{d}^{2} t_{d}^{2}+\ldots+s_{i} s_{j} t_{i} t_{j}+\ldots$
The quadratic kenrel: $\mathbf{s}, \mathbf{t} \in \mathbb{R}^{d}, \quad k(\mathbf{s}, \mathbf{t})=\left(\mathbf{s}^{\top} \mathbf{t}+1\right)^{2}$

$$
=1+2 \mathbf{s}^{\top} \mathbf{t}+\left(\mathbf{s}^{\top} \mathbf{t}\right)^{2}
$$

computes the dot product of the reweighted dictionary:

$$
\begin{aligned}
\boldsymbol{\Phi}: \quad \mathbb{R}^{d} & \rightarrow \mathbb{R}^{p=1+d+\frac{d(d+1)}{2}} \\
\mathbf{s} & \mapsto \boldsymbol{\Phi}=\left(1, \sqrt{2} s_{1}, \sqrt{2} s_{2}, \ldots, \sqrt{2} s_{d}, s_{1}^{2}, s_{2}^{2}, \ldots, s_{d}^{2}, \ldots, \sqrt{2} s_{i} s_{j}, \ldots\right) \\
p=1 & +d+\frac{d(d+1)}{2} \text { multiplications vs. } d+1 \\
& \text { use kernel to save computration }
\end{aligned}
$$

kernel: features throught pairwise comparizons

Kernel machines

use a kernel as a dictionary

$$
f(x)=\sum_{i=1}^{n} \alpha_{i} k\left(x, x_{i}\right)
$$

- α_{i} influence of example i
- $k\left(\mathbf{x}, \mathrm{x}_{i}\right)$ the kernel
depends on y_{i} do NOT depend on y_{i}

Definition (Kernel)

a function k from $\mathcal{X} \times \mathcal{X}$ onto \mathbb{R}.
semi-parametric version:

Kernel machines

use a kernel as a dictionary

$$
f(x)=\sum_{i=1}^{n} \alpha_{i} k\left(x, x_{i}\right)
$$

- α_{i} influence of example i
- $k\left(\mathbf{x}, \mathrm{x}_{i}\right)$ the kernel
depends on y_{i} do NOT depend on y_{i}

Definition (Kernel)

a function k from $\mathcal{X} \times \mathcal{X}$ onto \mathbb{R}.
semi-parametric version: given the family $q_{j}(\mathrm{x}), j=1, p$

$$
f(\mathbf{x})=\sum_{i=1}^{n} \alpha_{i} k\left(\mathbf{x}, \mathbf{x}_{i}\right)+\sum_{j=1}^{p} \beta_{j} q_{j}(\mathbf{x})
$$

Kernel machines

Definition (Kernel machines)

$$
\mathcal{A}\left(\left(\mathrm{x}_{i}, y_{i}\right)_{i=1, n}\right)(\mathrm{x})=\psi\left(\sum_{i=1}^{n} \alpha_{i} k\left(\mathrm{x}, \mathrm{x}_{i}\right)+\sum_{j=1}^{p} \beta_{j} q_{j}(\mathrm{x})\right)
$$

α et $\boldsymbol{\beta}$: parameters to be estimated.

Exemples

$$
\begin{array}{lr}
\mathcal{A}(x)=\sum_{i=1}^{n} \alpha_{i}\left(x-x_{i}\right)_{+}^{3}+\beta_{0}+\beta_{1} x & \text { splines } \\
\mathcal{A}(\mathbf{x})=\operatorname{sign}\left(\sum_{i \in I} \alpha_{i} \exp ^{-\frac{\left\|x-x_{i}\right\|^{2}}{b}}+\beta_{0}\right) & \text { SVM } \\
\mathbb{P}(y \mid \mathbf{x})=\frac{1}{Z} \exp \left(\sum_{i \in I} \alpha_{i} \mathbb{I}_{\left\{y=y_{i}\right\}}\left(\mathbf{x}^{\top} \mathbf{x}_{i}+b\right)^{2}\right) & \text { exponential family }
\end{array}
$$

example of kernel machine: the parzen estimate (1960)

assume the kernel is normalized: $\forall \mathbf{s} \in \mathcal{X}, \int_{\mathcal{X}} k(\mathbf{x}, \mathbf{s}) d \mathbf{x}=1$ for a given data set $\left(x_{1}, \ldots, x_{i}, \ldots, x_{n}\right)$ the parzen window estimate is

$$
\widehat{\mathbb{P}}(x)=\frac{1}{n} \sum_{i=1}^{n} k\left(\mathbf{x}, \mathbf{x}_{i}\right)
$$

derive: • potential based classification rule

- the Nadaraya-Watson regression estimator

Different kernel machines

- different kernels
kernel machines are defined for (almost) ANY kernel
kernel machines are defined for (almost) ANY input
- kernel machines are defined throught the cost functions
- task dependent criterion:
- classif (SVM, K Log. reg), regression (SVR, splines)
- ranking, clustering (OCSVM), semi supervised (Trans. SVM)
- dim. reduction (KPCA, KPLS), sources separation (KICA)...
- penalty term
- sparse / non sparse: $I_{0}=\left\{\alpha_{i}=0\right\}$

$$
f(\mathbf{x})=\sum_{i=1}^{n} \alpha_{i} k\left(\mathbf{x}, \mathbf{x}_{i}\right)+\sum_{j=1}^{p} \beta_{j} q_{j}(\mathbf{x})
$$

- different implementations (algorithms)
introducing sparsity

Different kernel machines

- different kernels
kernel machines are defined for (almost) ANY kernel
kernel machines are defined for (almost) ANY input
- kernel machines are defined throught the cost functions
- task dependent criterion:
- classif (SVM, K Log. reg), regression (SVR, splines)
- ranking, clustering (OCSVM), semi supervised (Trans. SVM)
- dim. reduction (KPCA, KPLS), sources separation (KICA)...
- penalty term
- sparse / non sparse: $I_{0}=\left\{\alpha_{i}=0\right\}$

$$
f(\mathbf{x})=\sum_{i=1}^{n} \alpha_{i} k\left(\mathbf{x}, \mathbf{x}_{i}\right)+\sum_{j=1}^{p} \beta_{j} q_{j}(\mathbf{x})
$$

- different implementations (algorithms)
introducing sparsity
linear algorithm \rightarrow kernelization \rightarrow sparsity

Let's summarize

- kernel k
- defines a relation between inputs
- provides genericity
- pairwise comparizons
- the definition of a kernel machine require also:
- Hypothesis set \mathcal{H}
- loss function ℓ
- a way to get universal consistency
- efficent algorithm

Roadmap

1 Kernels and the learning problem

- Two learning problems
- Kernelizing the linear regression
- Kernel machines: a definition

2 Tools: the functional framework

- In the beginning was the kernel

■ Kernel and hypothesis set
3 Kernel machines
■ Non sparse kernel machines
■ sparse kernel machines: SVM

- practical SVM

4 Conclusion

In the beginning was the kenrel...

Definition (Kernel)

a function of two variable k from $\mathcal{X} \times \mathcal{X}$ to \mathbb{R}

Definition (Positive kernel)

A kernel $k(s, t)$ on \mathcal{X} is said to be positive

- if it is symetric: $k(s, t)=k(t, s)$
- an if for any finite positive interger n :

$$
\forall\left\{\alpha_{i}\right\}_{i=1, n} \in \mathbb{R}, \forall\left\{\mathbf{x}_{i}\right\}_{i=1, n} \in \mathcal{X}, \quad \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \geq 0
$$

it is strictly positive if for $\alpha_{i} \neq 0$

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)>0
$$

Examples of positive kernels

the linear kernel: $\mathbf{s}, \mathbf{t} \in \mathbb{R}^{d}, \quad k(s, \mathbf{t})=\mathbf{s}^{\top} \mathbf{t}$
symetric: $\mathbf{s}^{\top} \mathbf{t}=\mathbf{t}^{\top} \mathbf{s}$
positive: $\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} \mathbf{x}_{i}^{\top} \mathbf{x}_{j}$

$$
=\left(\sum_{i=1}^{n} \alpha_{i} \mathbf{x}_{i}\right)^{\top}\left(\sum_{j=1}^{n} \alpha_{j} \mathbf{x}_{j}\right)=\left\|\sum_{i=1}^{n} \alpha_{i} \mathbf{x}_{i}\right\|^{2}
$$

the product kernel: $\quad k(s, t)=g(s) g(t) \quad$ for some $g: \mathbb{R}^{d} \rightarrow \mathbb{R}$,
symetric by construction
positive: $\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} g\left(\mathbf{x}_{i}\right) g\left(\mathbf{x}_{j}\right)$

$$
=\left(\sum_{i=1}^{n} \alpha_{i} g\left(\mathbf{x}_{i}\right)\right)\left(\sum_{j=1}^{n} \alpha_{j} g\left(\mathbf{x}_{j}\right)\right)=\left(\sum_{i=1}^{n} \alpha_{i} g\left(\mathbf{x}_{i}\right)\right)^{2}
$$

$$
k \text { is positive } \Leftrightarrow \text { (its square root exists) } \Leftrightarrow k(\mathbf{s}, \mathbf{t})=\left\langle\phi_{\mathbf{s}}, \phi_{\mathbf{t}}\right\rangle
$$

positive definite Kernel (PDK) algebra (closure)

if $k_{1}(\mathbf{s}, \mathbf{t})$ and $k_{2}(\mathbf{s}, \mathbf{t})$ are two positive kernels

- DPK are a convex cone: $\quad \forall a_{1} \in \mathbb{R}^{+} \quad a_{1} k_{1}(\mathbf{s}, \mathbf{t})+k_{2}(\mathbf{s}, \mathbf{t})$
- for any measurable function ψ from \mathcal{X} to \mathbb{R} $k(\mathbf{s}, \mathbf{t})=\psi(\mathbf{s}) \psi(\mathbf{t})$
- product kernel
$k_{1}(\mathbf{s}, \mathbf{t}) k_{2}(\mathbf{s}, \mathbf{t})$

proofs

- by linearity:

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j}\left(a_{1} k_{1}(i, j) k_{2}(i, j)\right)=a_{1} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} k_{1}(i, j)+\sum_{i=1}^{n} \sum_{\substack{j=1}}^{n} \alpha_{i} \alpha_{j} k_{2}(i, j)
$$

- by linearity: $\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j}\left(\psi\left(\mathbf{x}_{\mathbf{i}}\right) \psi\left(\mathbf{x}_{j}\right)\right)=\left(\sum_{i=1}^{n} \alpha_{i} \psi\left(\mathbf{x}_{i}\right)\right)\left(\sum_{j=1}^{n} \alpha_{j} \psi\left(\mathbf{x}_{j}\right)\right)$
- assuming $\exists \psi_{\ell}$ s.t. $k_{1}(\mathbf{s}, \mathbf{t})=\sum_{\ell} \psi_{\ell}(\mathbf{s}) \psi_{\ell}(\mathbf{t})$

$$
\begin{aligned}
\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} k_{1}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) k_{2}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) & =\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j}\left(\sum_{\ell} \psi_{\ell}\left(\mathbf{x}_{i}\right) \psi_{\ell}\left(\mathbf{x}_{j}\right) k_{2}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)\right) \\
& =\sum_{\ell} \sum_{i=1}^{n} \sum_{j=1}^{n}\left(\alpha_{i} \psi_{\ell}\left(\mathbf{x}_{i}\right)\right)\left(\alpha_{j} \psi_{\ell}\left(\mathbf{x}_{j}\right)\right) k_{2}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)
\end{aligned}
$$

Kernel engineering: building PDK

- for any polynomial with positive coef. ϕ from \mathbb{R} to \mathbb{R}
- if Ψ is a function from \mathbb{R}^{d} to \mathbb{R}^{d}

$$
\phi(k(\mathbf{s}, \mathbf{t}))
$$

- if φ from \mathbb{R}^{d} to \mathbb{R}^{+}, is minimum in 0

$$
k(\mathbf{s}, \mathbf{t})=\varphi(\mathbf{s}+\mathbf{t})-\varphi(\mathbf{s}-\mathbf{t})
$$

- convolution of two positive kernels is a positive kernel

$$
K_{1} \star K_{2}
$$

the Gaussian kernel is a PDK

$$
\begin{aligned}
\exp \left(-\|\mathbf{s}-\mathbf{t}\|^{2}\right) & =\exp \left(-\|\mathbf{s}\|^{2}-\|\mathbf{t}\|^{2}-2 \mathbf{s}^{\top} \mathbf{t}\right) \\
& =\exp \left(-\|\mathbf{s}\|^{2}\right) \exp \left(-\|\mathbf{t}\|^{2}\right) \exp \left(2 \mathbf{s}^{\top} \mathbf{t}\right)
\end{aligned}
$$

- $\mathbf{s}^{\top} \mathbf{t}$ is a PDK and function exp as the limit of positive series expansion, so $\exp \left(2 \mathbf{s}^{\top} \mathbf{t}\right)$ is a PDK
- $\exp \left(-\|\mathbf{s}\|^{2}\right) \exp \left(-\|\mathbf{t}\|^{2}\right)$ is a PDK as a product kernel
- the product of two PDK is a PDK

some examples of PD kernels...

type	name	$k(s, t)$		
radial	gaussian	$\exp \left(-\frac{r^{2}}{b}\right), r=\\|s-t\\|$		
radial	laplacian	$\exp (-r / b)$		
radial	rationnal	$1-\frac{r^{2}}{r^{2}+b}$		
radial	loc. gauss.	$\max \left(0,1-\frac{r}{3 b}\right)^{d} \exp \left(-\frac{r^{2}}{b}\right)$		
non stat.	χ^{2}	$\exp (-r / b), r=\sum_{k} \frac{\left(s_{k}-t_{k}\right)^{2}}{s_{k}+t_{k}}$		
projective	polynomial	$\left(s^{\top} t\right)^{p}$		
projective	affine projective	cosine		
projective	correlation	$\left.s^{\top} t+b\right)^{p}$		

kernels for objects and structures

kernels on histograms and probability distributions

$$
k(p(x), q(x))=\int k_{i}(p(x), q(x)) \mathbb{P}(x) d x
$$

kernel on strings

- spectral string kernel

$$
k(\mathbf{s}, \mathbf{t})=\sum_{u} \phi_{u}(\mathbf{s}) \phi_{u}(\mathbf{t})
$$

- using sub sequences
- similarities by alignements

$$
k(\mathbf{s}, \mathbf{t})=\sum_{\pi} \exp (\beta(\mathbf{s}, \mathbf{t}, \pi))
$$

kernels on graphs

- the pseudo inverse of the (regularized) graph Laplacian

$$
L=D-A \quad A \text { is the adjency matrix } D \text { the degree matrix }
$$

- diffusion kernels

$$
\frac{1}{Z(b)} \exp ^{b L}
$$

- subgraph kernel convolution (using random walks)
and kernels on heterogeneous data (image), HMM, automata...

different point of view about kernels

kernel and scalar product

$$
k(\mathbf{s}, \mathbf{t})=\langle\phi(\mathbf{s}), \phi(\mathbf{t})\rangle_{\mathcal{H}}
$$

kernel and distance

$$
d(\mathbf{s}, \mathbf{t})^{2}=k(\mathbf{s}, \mathbf{s})+k(\mathbf{t}, \mathbf{t})-2 k(\mathbf{s}, \mathbf{t})
$$

kernel and covariance: a positive matrix is a covariance matrix

$$
\begin{aligned}
& \mathbb{P}(\mathbf{f})=\frac{1}{Z} \exp \left(-\frac{1}{2}\left(\mathbf{f}-\mathbf{f}_{0}\right)^{\top} K^{-1}\left(\mathbf{f}-\mathbf{f}_{0}\right)\right) \\
& \quad \text { if } f_{0}=0 \text { and } f=K \boldsymbol{\alpha}, \mathbf{P}(\boldsymbol{\alpha})=\frac{1}{Z} \exp -\frac{1}{2} \boldsymbol{\alpha}^{\top} K \boldsymbol{\alpha}
\end{aligned}
$$

Kernel and regularity (green's function)

$$
k(\mathbf{s}, \mathbf{t})=P^{*} P \delta_{\mathbf{s}-\mathbf{t}} \quad \text { for some operator } P \quad \text { (e.g. some differential) }
$$

Roadmap

1 Kernels and the learning problem

- Two learning problems
- Kernelizing the linear regression
- Kernel machines: a definition

2 Tools: the functional framework

- In the beginning was the kernel

■ Kernel and hypothesis set
3 Kernel machines

- Non sparse kernel machines

■ sparse kernel machines: SVM

- practical SVM

4 Conclusion

From kernel to functions

$\mathcal{H}_{0}=\left\{f \mid m_{f}<\infty ; f_{j} \in \mathbb{R} ; t_{j} \in \mathcal{X}, f(\mathbf{x})=\sum_{j=1}^{m_{f}} f_{j} k\left(\mathbf{x}, t_{j}\right)\right\}$
let define the bilinear form $\left(g(x)=\sum_{i=1}^{m_{g}} g_{i} k\left(\mathbf{x}, s_{i}\right)\right)$:

$$
\forall f, g \in \mathcal{H}_{0},\langle f, g\rangle_{\mathcal{H}_{0}}=\sum_{j=1}^{m_{f}} \sum_{i=1}^{m_{g}} f_{j} g_{i} k\left(t_{j}, s_{i}\right)
$$

Evaluation functional: $\forall x \in \mathcal{X}$

$$
f(\mathbf{x})=\langle f(.), k(\mathbf{x}, .)\rangle_{\mathcal{H}_{0}}
$$

from k to \mathcal{H}
with any postive kernel, a hypothesis set can be constructed \mathcal{H} with its metric

RKHS

Definition (reproducing kernel Hibert space (RKHS))

a Hilbert space \mathcal{H} embeded with the inner product $\langle., \text {, }\rangle_{\mathcal{H}}$ is said to be with reproduicing kernel if it exists a positive kernel k such that

$$
\forall s \in \mathcal{X}, k(., s) \in \mathcal{H} \text { et } \forall f \in \mathcal{H}, \quad f(s)=\langle f(.), k(s, .)\rangle_{\mathcal{H}}
$$

positive kernel \Leftrightarrow RKHS

- any function is pointwise defined
- defines the inner product
- it defines the regularity (smoothness) of the hypothesis set

functional differentiation in RKHS

Let J be a functional

$$
\begin{array}{llll}
J: & \mathcal{H} \rightarrow \mathbb{R} \\
& f \mapsto & J(f)
\end{array} \quad \text { examples: } \quad J_{1}(f)=\|f\|^{2}, J_{2}(f)=f(\mathbf{x}),
$$

J directional derivative in direction g at point f

$$
d J(f, g)=\lim _{\varepsilon \rightarrow 0} \frac{J(f+\varepsilon g)-J(f)}{\varepsilon}
$$

Gradient $\nabla_{J}(f)$

$$
\begin{aligned}
\nabla_{J}: & \mathcal{H} \\
& f \quad \mathcal{H}_{J} \quad \text { si } \quad d J(f, g)=\left\langle\nabla_{J}(f), g\right\rangle_{\mathcal{H}}
\end{aligned}
$$

exercice: find out $\nabla_{J_{1}}(f)$ et $\nabla_{J_{2}}(f)$

other kernels (what realy matters)

- finite kernels

$$
k(\mathbf{s}, \mathbf{t})=\left(\phi_{1}(\mathbf{s}), \ldots, \phi_{p}(\mathbf{s})\right)^{\top}\left(\phi_{1}(\mathbf{t}), \ldots, \phi_{p}(\mathbf{t})\right)
$$

- Mercer kernels positive on a compact set $\quad \Leftrightarrow \quad k(\mathbf{s}, \mathbf{t})=\sum_{j=1}^{p} \lambda_{j} \phi_{j}(\mathbf{s}) \phi_{j}(\mathbf{t})$
- positive kernels
- positive semi-definite
- conditionnaly positive (for some functions $\left.p_{n}\right)_{n}$

$$
\forall\left\{\mathbf{x}_{i}\right\}_{i=1, n}, \forall \alpha_{i}, \sum_{i}^{n} \alpha_{i} p_{j}\left(\mathbf{x}_{i}\right)=0 ; \quad j=1, p, \quad \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \geq 0
$$

- symetric non positive

$$
k(\mathbf{s}, \mathbf{t})=\tanh \left(\mathbf{s}^{\top} \mathbf{t}+\alpha_{0}\right)
$$

- non symetric - non positive the key property: $\nabla_{J_{t}}(f)=k(t,$.$) holds$

Let's summarize

- positive kernels \Leftrightarrow RKHS $=\mathcal{H} \Leftrightarrow$ regularity $\|f\|_{\mathcal{H}}^{2}$
- the key property: $\nabla_{J_{t}}(f)=k(t,$.$) holds not only for positive$ kernels $\quad f\left(\mathbf{x}_{i}\right)$ exists (pointwise defined functions)
- universal consistency in RKHS
- the Gram matrix summarize the pairwise comparizons

1 Kernels and the learning problem
■ Two learning problems

- Kernelizing the linear regression
- Kernel machines: a definition

工 Tools: the functional framework

- In the beginning was the kernel
- Kernel and hypothesis set

3 Kernel machines
■ Non sparse kernel machines
■ sparse kernel machines: SVM

- practical SVM

4 Conclusion

Interpolation splines

find out $f \in \mathcal{H}$ such that $f\left(\mathbf{x}_{i}\right)=y_{i}, \quad i=1, \ldots, n$

It is an ill posed problem

Interpolation splines: minimum norm interpolation

$$
\left\{\begin{aligned}
\min _{f \in \mathcal{H}} & \frac{1}{2}\|f\|_{\mathcal{H}}^{2} \\
\text { such that } & f\left(\mathbf{x}_{i}\right)=y_{i}, \quad i=1, \ldots, n
\end{aligned}\right.
$$

The lagrangian (α_{i} Lagrange multipliers)

$$
L(f, \boldsymbol{\alpha})=\frac{1}{2}\|f\|^{2}-\sum_{i=1}^{n} \alpha_{i}\left(f\left(\mathbf{x}_{i}\right)-y_{i}\right)
$$

dual formulation (remove f from the lagrangian)

Interpolation splines: minimum norm interpolation

$$
\left\{\begin{aligned}
\min _{f \in \mathcal{H}} & \frac{1}{2}\|f\|_{\mathcal{H}}^{2} \\
\text { such that } & f\left(\mathbf{x}_{i}\right)=y_{i}, \quad i=1, \ldots, n
\end{aligned}\right.
$$

The lagrangian (α_{i} Lagrange multipliers)

$$
L(f, \boldsymbol{\alpha})=\frac{1}{2}\|f\|^{2}-\sum_{i=1}^{n} \alpha_{i}\left(f\left(\mathbf{x}_{i}\right)-y_{i}\right)
$$

optimality for $f: \quad \nabla_{f} L(f, \boldsymbol{\alpha})=0 \quad \Leftrightarrow \quad f(\mathbf{x})=\sum_{i=1}^{n} \alpha_{i} k\left(\mathbf{x}_{i}, \mathbf{x}\right)$
dual formulation (remove f from the lagrangian)

Interpolation splines: minimum norm interpolation

$$
\left\{\begin{aligned}
\min _{f \in \mathcal{H}} & \frac{1}{2}\|f\|_{\mathcal{H}}^{2} \\
\text { such that } & f\left(\mathbf{x}_{i}\right)=y_{i}, \quad i=1, \ldots, n
\end{aligned}\right.
$$

The lagrangian (α_{i} Lagrange multipliers)

$$
L(f, \boldsymbol{\alpha})=\frac{1}{2}\|f\|^{2}-\sum_{i=1}^{n} \alpha_{i}\left(f\left(\mathbf{x}_{i}\right)-y_{i}\right)
$$

optimality for $f: \quad \nabla_{f} L(f, \boldsymbol{\alpha})=0 \quad \Leftrightarrow \quad f(\mathbf{x})=\sum_{i=1}^{n} \alpha_{i} k\left(\mathbf{x}_{i}, \mathbf{x}\right)$
dual formulation (remove f from the lagrangian):

$$
Q(\boldsymbol{\alpha})=-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)+\sum_{i=1}^{n} \alpha_{i} y_{i} \quad \text { solution: } \quad \max _{\boldsymbol{\alpha} \in \mathbf{R}^{n}} Q(\boldsymbol{\alpha})
$$

$$
\mathrm{K} \alpha=\mathrm{y}
$$

Representer theorem

Theorem (epresenter theorem)

Let \mathcal{H} be a RKHS with kernel $k(s, t)$. Let ℓ be a function from \mathcal{X} to \mathbb{R} (loss function) and Φ a non decreasing function from \mathbb{R} to \mathbb{R}. If there exists a function f^{*} minimizing:

$$
f^{*}=\underset{f \in \mathcal{H}}{\operatorname{argmin}} \sum_{i=1}^{n} \ell\left(y_{i}, f\left(\mathbf{x}_{i}\right)\right)+\Phi\left(\|f\|_{\mathcal{H}}^{2}\right)
$$

then there exists a vector $\alpha \in \mathbb{R}^{n}$ such that:

$$
f^{*}(\mathbf{x})=\sum_{i=1}^{n} \alpha_{i} k\left(\mathbf{x}, \mathbf{x}_{i}\right)
$$

it can be generalized to the semi parametric case: $+\sum_{j=1}^{m} \beta_{j} \phi_{j}(\mathbf{x})$

Smooting splines

introducing the error (the slack) $\xi=f\left(x_{i}\right)-y_{i}$

$$
(\mathcal{S})\left\{\begin{aligned}
\min _{f \in \mathcal{H}} & \frac{1}{2}\|f\|_{\mathcal{H}}^{2}+\frac{1}{2 \lambda} \sum_{i=1}^{n} \xi_{i}^{2} \\
\text { such that } & f\left(x_{i}\right)=y_{i}+\xi_{i}, \quad i=1, n
\end{aligned}\right.
$$

three equivalents definitions
$\left(\mathcal{S}^{\prime}\right) \min _{f \in \mathcal{H}} \frac{1}{2} \sum_{i=1}^{n}\left(f\left(x_{i}\right)-y_{i}\right)^{2}+\frac{\lambda}{2}\|f\|_{\mathcal{H}}^{2}$

$$
\left\{\begin{array} { l l l }
{ \operatorname { m i n } _ { f \in \mathcal { H } } } & { \frac { 1 } { 2 } \| f \| _ { \mathcal { H } } ^ { 2 } } \\
{ \text { such that } } & { \sum _ { i = 1 } ^ { n } (f (\mathbf { x } _ { i }) - y _ { i }) ^ { 2 } \leq C ^ { \prime } }
\end{array} \quad \left\{\begin{array}{rl}
\min _{f \in \mathcal{H}} & \sum_{i=1}^{n}\left(f\left(\mathbf{x}_{i}\right)-y_{i}\right)^{2} \\
\text { such that } & \|f\|_{\mathcal{H}}^{2} \leq C^{\prime \prime}
\end{array}\right.\right.
$$

using the representer theorem

$$
\left(\mathcal{S}^{\prime \prime}\right) \quad \min _{\boldsymbol{\alpha} \in \mathbf{R}^{n}} \frac{1}{2}\|K \boldsymbol{\alpha}-\mathbf{y}\|^{2}+\frac{\lambda}{2} \boldsymbol{\alpha}^{\top} K \boldsymbol{\alpha}
$$

solution:

$$
(\mathcal{S}) \Leftrightarrow\left(\mathcal{S}^{\prime}\right) \Leftrightarrow\left(\mathcal{S}^{\prime \prime}\right) \Leftrightarrow(K+\lambda /) \boldsymbol{\alpha}=\mathbf{y}
$$

Kernel logistic regression

inspiration: the Bayes rule

$$
D(\mathbf{x})=\operatorname{sign}\left(f(\mathbf{x})+\alpha_{0}\right) \quad \Longrightarrow \quad \log \left(\frac{\mathbf{P}(Y=1 \mid \mathbf{x})}{\mathbf{P}(Y=-1 \mid \mathbf{x})}\right)=f(\mathbf{x})+\alpha_{0}
$$

probabilities:

$$
\mathbb{P}(Y=1 \mid \mathbf{x})=\frac{\exp ^{f(x)+\alpha_{0}}}{1+\exp ^{f(x)+\alpha_{0}}} \quad \mathbb{P}(Y=-1 \mid \mathbf{x})=\frac{1}{1+\exp ^{f(x)+\alpha_{0}}}
$$

Rademacher distribution

$$
\mathcal{L}\left(x_{i}, y_{i}, f, \alpha_{0}\right)=\mathbb{P}\left(Y=1 \mid \mathbf{x}_{i}\right)^{\frac{y_{i}+1}{2}}\left(1-\mathbb{P}\left(Y=1 \mid \mathbf{x}_{i}\right)\right)^{\frac{1-y_{i}}{2}}
$$

penalized likelihood

$$
\begin{aligned}
J\left(f, \alpha_{0}\right) & =-\sum_{i=1}^{n} \log \left(\mathcal{L}\left(x_{i}, y_{i}, f, \alpha_{0}\right)\right)+\frac{\lambda}{2}\|f\|_{\mathcal{H}}^{2} \\
& =\sum_{i=1}^{n^{n}} \log \left(1+\exp ^{-y_{i}\left(f\left(x_{i}\right)+\alpha_{0}\right)}\right)+\frac{\lambda}{2}\|f\|_{\mathcal{H}}^{2}
\end{aligned}
$$

Kernel logistic regression (2)

$$
(\mathcal{R}) \begin{cases}\min _{f \in \mathcal{H}} & \frac{1}{2}\|f\|_{\mathcal{H}}^{2}+\frac{1}{\lambda} \sum_{i=1}^{n} \log \left(1+\exp ^{-\xi_{i}}\right) \\ \text { with } & \xi_{i}=y_{i}\left(f\left(\mathbf{x}_{i}\right)+\alpha_{0}\right), \quad i=1, n\end{cases}
$$

Representer theorem

$$
J\left(\alpha, \alpha_{0}\right)=\mathbb{I}^{\top} \log \left(\mathbb{I}+\exp ^{\operatorname{diag}(\mathbf{y}) K \boldsymbol{\alpha}+\alpha_{0} \boldsymbol{y}}\right)+\frac{\lambda}{2} \boldsymbol{\alpha}^{\top} K \boldsymbol{\alpha}
$$

gradient vector anf Hessian matrix:

$$
\begin{aligned}
& \nabla_{\boldsymbol{\alpha}} J\left(\alpha, \alpha_{0}\right)=K(\mathbf{y}-(2 \mathbf{p}-\mathbb{I}))+\lambda K \boldsymbol{\alpha} \\
& H_{\boldsymbol{\alpha}} J\left(\alpha, \alpha_{0}\right)=K \operatorname{diag}(\mathbf{p}(\mathbb{I}-\mathbf{p})) K+\lambda K
\end{aligned}
$$

solve the problem using Newton iterations

$$
\boldsymbol{\alpha}^{\text {new }}=\boldsymbol{\alpha}^{\text {old }}+(K \operatorname{diag}(\mathbf{p}(\mathbb{I}-\mathbf{p})) K+\lambda K)^{-1} K(\mathbf{y}-(2 \mathbf{p}-\mathbb{I})+\lambda \boldsymbol{\alpha})
$$

Let's summarize

- pros
- Universality
- from \mathcal{H} to \mathbb{R}^{n} using the representer theorem
- no (explicit) curse of dimensionality
- splines $\mathcal{O}\left(n^{3}\right) \quad$ (can be reduiced to $\left.\mathcal{O}\left(n^{2}\right)\right)$
- logistic regression $\mathcal{O}\left(k n^{3}\right) \quad$ (can be reduiced to $\mathcal{O}\left(k n^{2}\right)$
- no scalability!

SVM: the separable case (no noise)

$$
\left\{\begin{array} { l l }
{ \operatorname { m a x } _ { f , \alpha _ { 0 } } } & { m } \\
{ \text { with } } & { y _ { i } (f (\mathbf { x } _ { i }) + \alpha _ { 0 }) \geq m } \\
{ \text { and } } & { \frac { 1 } { 2 } \| f \| _ { \mathcal { H } } ^ { 2 } = 1 }
\end{array} \Leftrightarrow \left\{\begin{array}{ll}
\min _{f, \alpha_{0}} & \frac{1}{2}\|f\|_{\mathcal{H}}^{2} \\
\text { with } & y_{i}\left(f\left(\mathbf{x}_{i}\right)+\alpha_{0}\right) \geq 1
\end{array}\right.\right.
$$

3 ways to represent function f

$$
\left\{\begin{array} { l l }
{ \operatorname { m i n } _ { \mathbf { w } , \alpha _ { 0 } } } & { \frac { 1 } { 2 } \| \mathbf { w } \| _ { \mathbf { R } ^ { d } } ^ { 2 } = \frac { 1 } { 2 } \mathbf { w } ^ { \top } \mathbf { w } } \\
{ \text { with } } & { y _ { i } (\mathbf { w } ^ { \top } \phi (\mathbf { x } _ { i }) + \alpha _ { 0 }) \geq 1 }
\end{array} \Leftrightarrow \left\{\begin{array}{ll}
\min _{\boldsymbol{\alpha}, \alpha_{0}} & \frac{1}{2} \boldsymbol{\alpha}^{\top} K \boldsymbol{\alpha} \\
\text { with } & y_{i}\left(\boldsymbol{\alpha}^{\top} K(:, i)+\alpha_{0}\right) \geq 1
\end{array}\right.\right.
$$

using relevant features...

$$
\text { a data point becomes a function } \mathbf{x} \longrightarrow k(\mathbf{x}, .)
$$

input space representation: x

feature space: $k(x,$.

SVM dual formulation

Dual formulation

$$
\left\{\begin{array}{l}
\max _{\alpha \in \mathbf{R}^{n}}-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)+\sum_{i=1}^{n} \alpha_{i} \\
\text { with } \quad \sum_{i=1}^{n} \alpha_{i} y_{i}=0 \quad \text { and } 0 \leq \alpha_{i}, \quad i=1, n
\end{array}\right.
$$

The dual formulation gives a quadratic program (QP)

$$
\begin{cases}\min _{\boldsymbol{\alpha} \in \mathbb{R}^{n}} & \frac{1}{2} \boldsymbol{\alpha}^{\top} G \boldsymbol{\alpha}-\mathbb{I}^{\top} \boldsymbol{\alpha} \\ \text { with } & \boldsymbol{\alpha}^{\top} \mathbf{y}=0 \quad \text { and } 0 \leq \boldsymbol{\alpha}\end{cases}
$$

with $G_{i j}=y_{i} y_{j} k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$
with the linear kernel $f(\mathbf{x})=\sum_{i=1}^{n} \alpha_{i} y_{i}\left(\mathbf{x}^{\top} \mathbf{x}_{i}\right)=\sum_{j=1}^{d} \beta_{j} x_{j}$ when d is small wrt. n primal may be interesting.

the general case: C-SVM

Primal formulation

$$
(\mathcal{P})\left\{\begin{aligned}
\min _{f \in \mathcal{H}, \alpha_{0}, \xi \in \mathbf{R}^{n}} & \frac{1}{2}\|f\|^{2}+\frac{c}{p} \sum_{i=1}^{n} \xi_{i}^{p} \\
\text { such that } & y_{i}\left(f\left(\mathbf{x}_{i}\right)+\alpha_{0}\right) \geq 1-\xi_{i}, \quad \xi_{i} \geq 0, \quad i=1, n
\end{aligned}\right.
$$

C is the regularization path parameter (to be tuned)

$$
p=1, L_{1} \text { SVM }\left\{\begin{array}{cl}
\max _{\boldsymbol{\alpha} \in \mathbb{R}^{n}} & -\frac{1}{2} \boldsymbol{\alpha}^{\top} H \boldsymbol{\alpha}+\boldsymbol{\alpha}^{\top} \mathbb{I} \\
\text { such that } & \boldsymbol{\alpha}^{\top} \mathbf{y}=0 \text { and } 0 \leq \alpha_{i} \leq C \quad i=1, n
\end{array}\right.
$$

$p=2, L_{2}$ SVM

$$
\left\{\begin{aligned}
\max _{\boldsymbol{\alpha} \in \mathbb{R}^{n}} & -\frac{1}{2} \boldsymbol{\alpha}^{\top}\left(H+\frac{1}{C} I\right) \boldsymbol{\alpha}+\boldsymbol{\alpha}^{\top} \mathbb{I} \\
\text { such that } & \boldsymbol{\alpha}^{\top} \mathbf{y}=0 \text { and } 0 \leq \alpha_{i} \quad i=1, n
\end{aligned}\right.
$$

the regularization path: is the set of solutions $\alpha(C)$ when C varies

The importance of being support

$$
f(\mathbf{x})=\sum_{i=1}^{n} \alpha_{i} y_{i} k\left(\mathbf{x}_{i}, \mathbf{x}\right)
$$

data point	α	constraint value
\mathbf{x}_{i} useless	$\alpha_{i}=0$	$y_{i}\left(f\left(\mathbf{x}_{i}\right)+\alpha_{0}\right)>1$
\mathbf{x}_{i} support	$\alpha_{i}>0$	$y_{i}\left(f\left(\mathbf{x}_{i}\right)+\alpha_{0}\right)=1$

Table: When a data point is «support» it lies exacty on the margin.

here lies the efficency of the algorithm (and its complexity)!

sparsness: $\alpha_{i}=0$

Data groups: illustration

$$
\begin{aligned}
& f(\mathbf{x})=\sum_{i=1}^{n} \alpha_{i} k\left(\mathbf{x}, \mathbf{x}_{i}\right)+\alpha_{0} \\
& D(x)=\operatorname{sign}(f(\mathbf{x}))
\end{aligned}
$$

useless data well classified

$$
\alpha=0
$$

important data support $0<\alpha<C$

suspicious data

$$
\alpha=C
$$

Two more ways to derivate SVM

Using the hinge loss

$$
\min _{f \in \mathcal{H}, \alpha_{0} \in \mathbf{R}} \frac{1}{p} \sum_{i=1}^{n} \max \left(0,1-y_{i}\left(f\left(\mathbf{x}_{i}\right)+\alpha_{0}\right)\right)^{p}+\frac{1}{2 C}\|f\|^{2}
$$

Minimizing the distance betwen the convex hulls

$$
\left\{\begin{aligned}
\min _{\alpha} & \|u-v\|_{\mathcal{H}}^{2} \\
\text { with } & u(\mathbf{x})=\sum_{\left\{i \mid y_{i}=1\right\}} \alpha_{i} k\left(\mathbf{x}_{i}, \mathbf{x}\right), v(\mathbf{x})=\sum_{\left\{i \mid y_{i}=-1\right\}} \alpha_{i} k\left(\mathbf{x}_{i}, \mathbf{x}\right) \\
\text { and } & \sum_{\left\{i \mid y_{i}=1\right\}} \alpha_{i}=1, \sum_{\left\{i \mid y_{i}=-1\right\}} \alpha_{i}=1,0 \leq \alpha_{i} \quad i=1, n \\
f(\mathbf{x})= & \frac{2}{\|u-v\|_{\mathcal{H}}^{2}}(u(\mathbf{x})-v(\mathbf{x})) \text { and } \alpha_{0}=\frac{\|u\|_{\mathcal{H}}^{2}-\|v\|_{\mathcal{H}}^{2}}{\|u-v\|_{\mathcal{H}}^{2}}
\end{aligned}\right.
$$

Regularization path for SVM

$$
\min _{f \in \mathcal{H}} \sum_{i=1}^{n} \max \left(1-y_{i} f\left(\mathbf{x}_{i}\right), 0\right)+\frac{\lambda}{2}\|f\|_{\mathcal{H}}^{2}
$$

I_{α} is the set of support vectors s.t. $y_{i} f\left(x_{i}\right)=1$;

$\nabla_{f} J(f)=\sum_{i \in I_{\alpha}} \alpha_{i} y_{i} K\left(\mathbf{x}_{i},.\right)+\sum_{i \in I_{\mathbf{1}}} y_{i} K\left(\mathbf{x}_{i},.\right)+\lambda f($.$) \quad with \quad \alpha_{i}=\partial H\left(\mathbf{x}_{i}\right)$

Regularization path for SVM

$$
\min _{f \in \mathcal{H}} \sum_{i=1}^{n} \max \left(1-y_{i} f\left(x_{i}\right), 0\right)+\frac{\lambda}{2}\|f\|_{\mathcal{H}}^{2}
$$

I_{α} is the set of support vectors s.t. $y_{i} f\left(\mathrm{x}_{i}\right)=1$;

$\nabla_{f} J(f)=\sum_{i \in I_{\alpha}} \alpha_{i} y_{i} K\left(\mathbf{x}_{i},.\right)+\sum_{i \in I_{1}} y_{i} K\left(\mathbf{x}_{i},.\right)+\lambda f($.$) \quad with \quad \alpha_{i}=\partial H\left(\mathbf{x}_{i}\right)$
in particular at point $\mathrm{x}_{j} \in I_{\alpha}\left(f_{o}\left(\mathrm{x}_{\mathrm{j}}\right)=f_{n}\left(\mathrm{x}_{j}\right)=y_{j}\right)$

$$
\begin{aligned}
\sum_{i \in I_{\alpha}} \alpha_{i o} y_{i} K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) & =-\sum_{i \in I_{1}} y_{i} K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)-\lambda_{o} y_{j} \\
\sum_{i \in I_{\alpha}} \alpha_{i n} y_{i} K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) & =-\sum_{i \in I_{1}} y_{i} K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)-\lambda_{n} y_{j} \\
\hline G\left(\alpha_{n}-\alpha_{o}\right) & =\left(\lambda_{o}-\lambda_{n}\right) \mathbf{y} \quad \text { avec } \quad G_{i j}=y_{i} K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \\
\alpha_{n} & =\alpha_{o}+\left(\lambda_{o}-\lambda_{n}\right) \mathbf{w} \quad \mathbf{w}=(G)^{-1} \mathbf{y}
\end{aligned}
$$

Example of regularization path

α estimation and data selection

How to choose ℓ and P to get linear regularization path?

 the path is piecewise linear \Leftrightarrowone is piecewise quadratic and the other is piecewise linear the convex case [Rosset \& Zhu, 07]

$$
\min _{\boldsymbol{\beta} \in \mathbb{R}^{d}} \ell(\boldsymbol{\beta})+\lambda P(\boldsymbol{\beta})
$$

1. piecewise linearity: $\lim _{\varepsilon \rightarrow 0} \frac{\beta(\lambda+\varepsilon)-\beta(\lambda)}{\varepsilon}=$ constant
2. optimality

$$
\begin{aligned}
& \nabla \ell(\boldsymbol{\beta}(\lambda))+\lambda \nabla P(\boldsymbol{\beta}(\lambda))=0 \\
& \nabla \ell(\boldsymbol{\beta}(\lambda+\varepsilon))+(\lambda+\varepsilon) \nabla P(\boldsymbol{\beta}(\lambda+\varepsilon))=0
\end{aligned}
$$

3. Taylor expension

$$
\lim _{\varepsilon \rightarrow 0} \frac{\beta(\lambda+\varepsilon)-\beta(\lambda)}{\varepsilon}=\left[\nabla^{2} \ell(\boldsymbol{\beta}(\lambda))+\lambda \nabla^{2} P(\boldsymbol{\beta}(\lambda))\right]^{-1} \nabla P(\boldsymbol{\beta}(\lambda))
$$

$$
\nabla^{2} \ell(\beta(\lambda))=\text { constant } \quad \text { and } \quad \nabla^{2} P(\beta(\lambda))=0
$$

Problems with Piecewise linear regularization path

L	P	regression	classification	clustering
L_{2}	L_{1}	Lasso/LARS	L1 L2 SVM	PCA L1
L_{1}	L_{2}	SVR	SVM	OC SVM
L_{1}	L_{1}	L1 LAD	L1 SVM	
		Danzig Selector		

Table: example of piecewise linear regularization path algorithms.
$P: \quad L_{p}=\sum_{j=1}^{d}\left|\beta_{j}\right|^{p}$ $L: \quad L_{p}:|f(\mathrm{x})-y|^{p}$ hinge $(y f(\mathrm{x})-1)_{+}^{p}$
ε-insensitive

$$
\begin{cases}0 & \text { if }|f(\mathbf{x})-y|<\varepsilon \\ |f(\mathbf{x})-y|-\varepsilon & \text { else }\end{cases}
$$

Huber's loss: $\quad \begin{cases}|f(\mathbf{x})-y|^{2} & \text { if }|f(\mathrm{x})-y|<t \\ 2 t|f(\mathrm{x})-y|-t^{2} & \text { else }\end{cases}$

standart formulation

- portfolio optimization (Markovitz, 1952)
- return vs. risk $\begin{cases}\min _{\boldsymbol{\beta}} & \frac{1}{2} \boldsymbol{\beta}^{\top} \boldsymbol{Q} \boldsymbol{\beta} \\ \text { with } & \mathbf{e}^{\top} \boldsymbol{\beta}=C\end{cases}$

- efficiency frontier: piecewise linear (Critical path Algo.)
- Sensitivity analysis: standart formulation (Heller, 1954)

$$
\begin{cases}\min _{\boldsymbol{\beta}} & \frac{1}{2} \boldsymbol{\beta}^{\top} Q \boldsymbol{\beta}+(\mathbf{c}+\lambda \Delta \mathbf{c})^{\top} \boldsymbol{\beta} \\ \text { with } & A \boldsymbol{\beta}=\mathbf{b}+\mu \Delta \mathbf{b}\end{cases}
$$

- Parametric programming (see T. Gal's book 1968)
- in the general case of PLP: the reg. path is piecewise linear
- ... and PQP is piecewise quadratic
- multiparametric programming

ν-SVM and other formulations...

$\nu \in[0,1]$

$$
(\nu)\left\{\begin{aligned}
\min _{f, \alpha_{0}, \xi, m} & \frac{1}{2}\|f\|_{\mathcal{H}}^{2}+\frac{1}{n p} \sum_{i=1}^{n} \xi_{i}^{p}-\nu m \\
\text { with } & y_{i}\left(f\left(\mathbf{x}_{i}\right)+\alpha_{0}\right) \geq m-\xi_{i}, \quad i=1, n, \\
\text { and } & m \geq 0, \quad \xi_{i} \geq 0, \quad i=1, n
\end{aligned}\right.
$$

for $p=1$ the dual formulation is:

$$
\begin{cases}\max _{\alpha \in \mathbf{R}^{n}} & -\frac{1}{2} \boldsymbol{\alpha}^{\top} G \boldsymbol{\alpha} \\ \text { with } & \boldsymbol{\alpha}^{\top} \mathbf{y}=0 \text { et } 0 \leq \alpha_{i} \leq \frac{1}{n} \quad i=1, n \\ \text { and } & \nu \leq \boldsymbol{\alpha}^{\top} \mathbb{I}\end{cases}
$$

$$
C=\frac{1}{m}
$$

SVM with non symetric costs

problem in the primal

$$
\left\{\begin{aligned}
\min _{f \in \mathcal{H}, \alpha_{0}, \xi \in \mathbf{R}^{n}} & \frac{1}{2}\|f\|_{\mathcal{H}}^{2}+C^{+} \sum_{\left\{i \mid y_{i}=1\right\}} \xi_{i}^{p}+C^{-} \sum_{\left\{i \mid y_{i}=-1\right\}} \xi_{i}^{p} \\
\text { with } & y_{i}\left(f\left(\mathbf{x}_{i}\right)+\alpha_{0}\right) \geq 1-\xi_{i}, \quad \xi_{i} \geq 0, \quad i=1, n
\end{aligned}\right.
$$

for $p=1$ the dual formulation is the following:

$$
\begin{cases}\max _{\alpha \in \mathbf{R}^{n}} & -\frac{1}{2} \boldsymbol{\alpha}^{\top} G \boldsymbol{\alpha}+\boldsymbol{\alpha}^{\top} \mathbb{I} \\ \text { with } & \boldsymbol{\alpha}^{\top} \mathbf{y}=0 \text { and } 0 \leq \alpha_{i} \leq C^{+} \text {or } C^{-} \quad i=1, n\end{cases}
$$

Generalized SVM

$$
\min _{f \in \mathcal{H}, \alpha_{0} \in \mathbf{R}} \sum_{i=1}^{n} \max \left(0,1-y_{i}\left(f\left(\mathbf{x}_{i}\right)+\alpha_{0}\right)\right)+\frac{1}{C} \varphi(f) \quad \varphi \text { convex }
$$

in particular $\varphi(f)=\|f\|_{p}^{p}$ with $p=1$ leads to L1 SVM.

$$
\left\{\begin{aligned}
\min _{\alpha \in \mathbf{R}^{\boldsymbol{n}}, \alpha_{\mathbf{0}}, \xi} & \mathbb{I}^{\top} \boldsymbol{\beta}+C \mathbb{I}^{\top} \xi \\
\text { with } & y_{i}\left(\sum_{j=1}^{n} \alpha_{j} k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)+\alpha_{0}\right) \geq 1-\xi_{i}, \\
\text { and } & -\beta_{i} \leq \alpha_{i} \leq \beta_{i}, \quad \xi_{i} \geq 0, \quad i=1, n
\end{aligned}\right.
$$

with $\boldsymbol{\beta}=|\boldsymbol{\alpha}|$. the dual is:

$$
\left\{\begin{aligned}
\max _{\gamma, \delta, \delta^{*} \in \mathbb{R}^{3 n}} & \mathbb{I}^{\top} \gamma \\
\text { with } & \mathbf{y}^{\top} \gamma=0, \delta_{i}+\delta_{i}^{*}=1 \\
& \sum_{j=1}^{n} \gamma_{j} k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\delta_{i}-\delta_{i}^{*}, \quad i=1, n \\
\text { and } & 0 \leq \delta_{i}, 0 \leq \delta_{i}^{*}, 0 \leq \gamma_{i} \leq C, \quad i=1, n
\end{aligned}\right.
$$

SVM reduction (reduced set method))

- objective: compile the model
- $f(x)=\sum_{i=1}^{n_{s}} \alpha_{i} k\left(\mathbf{x}_{i}, \mathbf{x}\right), n_{s} \ll n, \quad n_{s}$ too big
- compiled model as the solution of:

$$
g(\mathbf{x})=\sum_{i=1}^{n_{c}} \beta_{i} k\left(\mathbf{z}_{i}, \mathbf{x}\right), n_{c} \ll n_{s}
$$

- $\beta, \mathbf{z}_{\boldsymbol{i}}$ and c are tuned by minimizing:

$$
\min _{\beta, z_{i}}\|g-f\|_{H}^{2}
$$

where

$$
\min _{\beta, z_{i}}\|g-f\|_{H}^{2}=\boldsymbol{\alpha}^{\top} K_{x} \alpha+\boldsymbol{\beta}^{\top} K_{z} \beta-2 \boldsymbol{\alpha}^{\top} K_{x z} \boldsymbol{\beta}
$$

some authors advice $0,03 \leq \frac{n_{c}}{n_{s}} \leq 0,1$

- solve it by using use (stochastic) gradient (its a RBF problem)

SVM and probabilities (1/2)

$$
\log \frac{\mathbb{P}(Y=1 \mid \mathbf{x})}{\mathbb{P}(Y=-1 \mid \mathbf{x})} \text { as (almost) the same sign as } f(\mathbf{x})
$$

$$
\log \frac{\mathbb{P}(Y=1 \mid \mathbf{x})}{\mathbb{P}(Y=-1 \mid \mathbf{x})}=a_{1} f(\mathbf{x})+a_{2} \quad \mathbb{P}(Y=1 \mid \mathbf{x})=1-\frac{1}{1+\exp ^{a_{1} f(\mathbf{x})+a_{2}}}
$$

a_{1} et a_{2} estimated using maximum likelihood
some facts

- SVM is universaly consistent (coverges towards the Bayes risk)
- SVM asymptotically implements the bayes rule
- but theoreticaly: no consistency towards conditional probabilities (due to the nature of sparsity)
- to estimate conditional probabilities on an interval (typicaly $\left[\frac{1}{2}-\eta, \frac{1}{2}+\eta\right]$) to spasness in this interval (all data points have to be support vectors)

SVM and probabilities (2/2)

An alternative approach

$$
g(\mathbf{x})-\varepsilon^{-}(\mathbf{x}) \leq \mathbb{P}(Y=1 \mid \mathbf{x}) \leq g(\mathbf{x})+\varepsilon^{+}(\mathbf{x})
$$

with $g(\mathbf{x})=\frac{1}{1+4^{-f(x)-\alpha_{0}}}$
non parametric functions ε^{-}and ε^{+}have to verify:

$$
\begin{aligned}
g(\mathbf{x})+\varepsilon^{+}(\mathbf{x}) & =\exp ^{-a_{1}\left(1-f(\mathbf{x})-\alpha_{0}\right)_{+}+a_{2}} \\
1-g(\mathbf{x})-\varepsilon^{-}(\mathbf{x}) & =\exp ^{-a_{1}\left(1+f(\mathbf{x})+\alpha_{0}\right)++a_{2}}
\end{aligned}
$$

with $a_{1}=\log 2$ and $a_{2}=0$

logistic regression and the import vector machine

- Logistic regression is NON sparse
- kernalize it using the dictionary strategy
- Algorithm:
- find the solution of the KLR using only a subset \mathcal{S} of the data
- build \mathcal{S} iteratively using active constraint approach
- this trick brings sparsity
- it estimates probability
- it can naturally be generalized to the multiclass case
- efficent when uses:
- a few import vectors
- component-wise update procedure
- extention using L_{1} KLR

Multiclass SVM

- one vs all: winner takes all
- one vs one:
- max-wins voting
- pairwise coupling: use probability
- global approach (size $c \times n$),
- formal (differents variations)

$$
\left\{\begin{aligned}
\min _{f \in \mathcal{H}, \alpha_{\mathbf{0}}, \xi \in \mathbb{R}^{n}} & \frac{1}{2} \sum_{\ell=1}^{c}\left\|f_{\ell}\right\|_{\mathcal{H}}^{2}+\frac{C}{p} \sum_{i=1}^{n} \sum_{\ell=1, \ell \neq y_{i}}^{c} \xi_{i \ell}^{p} \\
\text { with } & y_{i}\left(f_{y_{i}}\left(\mathbf{x}_{i}\right)+b_{y_{i}}-f_{\ell}\left(\mathbf{x}_{i}\right)-b_{\ell}\right) \geq 1-\xi_{i \ell} \\
\text { and } & \xi_{i \ell} \geq 0 \text { for } i=1, \ldots, n ; \quad \ell=1, \ldots, c ; \quad \ell \neq y_{i}
\end{aligned}\right.
$$

non consistent estimator but practicaly usefull

- structured outputs

approach	problem size	number of sub problems
all together	$n \times c$	1
1 vs. all	n	c
1 vs. 1	$\frac{2 n}{c}$	$\frac{c(c-1)}{2}$

Multiclass SVM

- one vs all: winner takes all
- one vs one:
- max-wins voting
- pairwise coupling: use probability - best results
- global approach (size $c \times n$),
- formal (differents variations)

$$
\left\{\begin{aligned}
\min _{f \in \mathcal{H}, \alpha_{\mathbf{0}}, \xi \in \mathbb{R}^{n}} & \frac{1}{2} \sum_{\ell=1}^{c}\left\|f_{\ell}\right\|_{\mathcal{H}}^{2}+\frac{C}{p} \sum_{i=1}^{n} \sum_{\ell=1, \ell \neq y_{i}}^{c} \xi_{i \ell}^{p} \\
\text { with } & y_{i}\left(f_{y_{i}}\left(\mathbf{x}_{i}\right)+b_{y_{i}}-f_{\ell}\left(\mathbf{x}_{i}\right)-b_{\ell}\right) \geq 1-\xi_{i \ell} \\
\text { and } & \xi_{i \ell} \geq 0 \text { for } i=1, \ldots, n ; \quad \ell=1, \ldots, c ; \quad \ell \neq y_{i}
\end{aligned}\right.
$$

non consistent estimator but practicaly usefull

- structured outputs

approach	problem size	number of sub problems
all together	$n \times c$	1
1 vs. all	n	c
1 vs. 1	$\frac{2 n}{c}$	$\frac{c(c-1)}{2}$

Mixture data

- $x: 200 \times 2$

- y : 100 for each class
- mixturee model with 10 gaussians
- the bayes error is known

the kernel effect

Noyau gaussien

tuning C and σ : grid search

for $\sigma=0.5: 0.25: 2$
for $C=0.1$ à 10000
3 different error estimate

C and σ influence

$$
C=1 ; \sigma=5
$$

$C=10000 ; \sigma=1$

$C=10000 ; \sigma=5$

checker board

- 2 classes
- 500 examples
- separable

a separable case

$n=500$ data points

$$
n=5000 \text { data points }
$$

tuning C and σ : grid search

empirical complexity

Conclusion

- nonlinearity throught kernel: using examples influence
- universality: kernel to functions (R.K.H.S.)
- representer theorem: from functions to vectors
- L1 provides sparsity

a question of vocabulary

- margin: regularization
- Mercer kenrel: positive kernel
- SVM: a method among others
- kernels (RKHS)
- regularization univ. consistency
- convexity
- sparsity
universality
efficiency
efficiency

no (explicit) model

but a kernel, a cost and a regularity

Historical perspective on kernel machines

statistics

1960 Parzen, Nadaraya Watson

1970 Splines

1980 Kernels: Silverman, Hardle...

1990 sparsity: Donoho (pursuit), Tibshirani (Lasso)...

Statistical learning

1985 Neural networks:

- non linear - universal
- structural complexity
- non convex optimization

1992 Vapnik et. al.

- theory - regularization consistancy
- convexity - Linearity
- Kernel - universality
- sparsity
- results: MNIST

what's new since 1995

- Applications
- kernlisation $w^{\top} \mathbf{x} \rightarrow\langle f, k(\mathbf{x}, .)\rangle_{\mathcal{H}}$
- kernel engineering
- sturtured outputs
- applications: image, text, signal, bio-info...
- Optimization
- dual: mloss.org
- regularization path
- approximation
- primal
- Statistic
- proofs and bounds
- model selection
- span bound
- multikernel: tuning (k and σ)

challenges: towards tough learning

- the size effect
- ready to use: automatization
- adaptative: on line context aware
- beyond kenrels
- Automatic and adaptive model selection
- variable selection
- kernel tuning (k et σ)
- hyperparametres: C, duality gap, λ
- \mathbb{P} change
- Theory
- non positive kernels
- a more general representer theorem

biblio: kernel-machines.org

- John Shawe-Taylor and Nello Cristianini Kernel Methods for Pattern Analysis, Cambridge University Press, 2004
- Bernhard Schölkopf and Alex Smola. Learning with Kernels. MIT Press, Cambridge, MA, 2002.
- Trevor Hastie, Robert Tibshirani and Jerome Friedman, The Elements of Statistical Learning:. Data Mining, Inference, and Prediction, springer, 2001
- Léon Bottou, Olivier Chapelle, Dennis DeCoste and Jason Weston Large-Scale Kernel Machines (Neural Information Processing, MIT press 2007
- Olivier Chapelle, Bernhard Scholkopf and Alexander Zien, Semi-supervised Learning, MIT press 2006
- Vladimir Vapnik. Estimation of Dependences Based on Empirical Data. Springer Verlag, 2006, 2nd edition.
- Vladimir Vapnik. The Nature of Statistical Learning Theory. Springer, 1995.
- Grace Wahba. Spline Models for Observational Data. SIAM CBMS-NSF Regional Conference Series in Applied Mathematics vol. 59, Philadelphia, 1990
- Alain Berlinet and Christine Thomas-Agnan, Reproducing Kernel Hilbert Spaces in Probability and Statistics, Kluwer Academic Publishers, 2003
- Marc Atteia et Jean Gaches, Approximation Hilbertienne - Splines, Ondelettes, Fractales, PUG, 1999

[^0]: ${ }^{1}$ http://yann.lecun.com/exdb/mnist/index.html

[^1]: $2^{\text {http: }} / /$ www.kyb.mpg.de/ \sim walder

