The intrusion-extrusion compromise for the projection and visualization of highdimensional data

1

John A. Lee and Michel Verleysen Machine Learning Group Université catholique de Louvain, Belgium {john.lee, michel.verleysen}@uclouvain.be

- Motivation: why nonlinear dimensionality reduction?
- Paradigms
- Distance preservation methods
 - Euclidean distances
 - Graph distances
- Quality assessment
 - Distances, Ranks, and Neighbourhoods
 - Co-ranking Matrix
 - Intrusions and extrusions
 - Existing criteria
 - Unifying framework
- Experiments

- Motivation: why nonlinear dimensionality reduction?
- Paradigms
- Distance preservation methods
 - Euclidean distances
 - Graph distances
- Quality assessment
 - Distances, Ranks, and Neighbourhoods
 - Co-ranking Matrix
 - Intrusions and extrusions
 - Existing criteria
 - Unifying framework
- Experiments

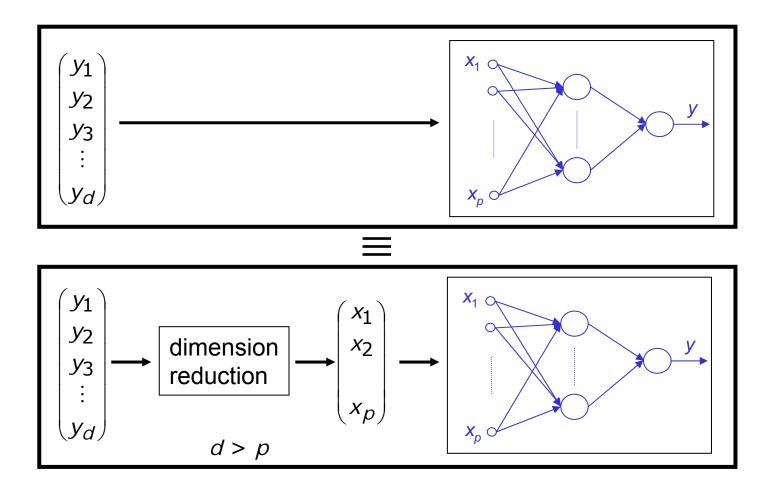
Motivation

Motivation

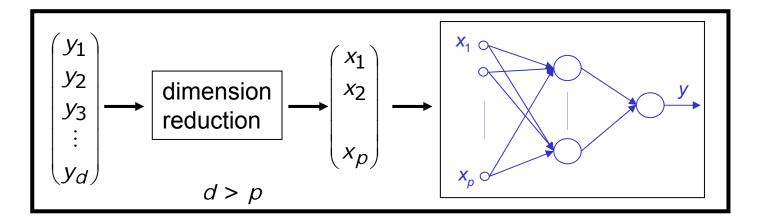
- High-dimensional data are
 - difficult to represent
 - difficult to understand
 - difficult to analyze
- Example: nonlinear models such as MLP (Multi-Layer Perceptron) or RBFN (Radial-Basis Function Network) with many inputs: difficult convergence, local minima, etc.
- Need to reduce the dimension of data while keeping information content!

Motivation

Reducing (the curse of) dimensionality



Reducing (the curse of) dimensionality



- Reducing the dimensionality
 - reduces the curse if dimensionality
 - makes models easier to learn
 - Local minima
 - Redundancy between inputs (non-idenfiability)
 - "Fills" the space

Motivation

Visualization

- These are data
- It is difficult to see something...

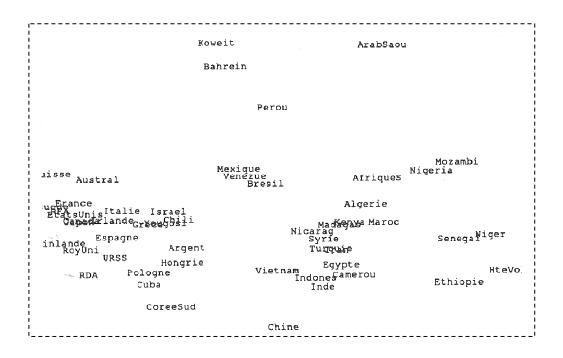
annual increase (%), infant mortality (‰), illiteracy ratio (%), school attendance (%), GIP, annual GIP increase (%)

Afrique du sud	2.9	89.0	50.0	19.0	2680.0	-2.9	Italie	0.4	13.0	4.6	73.0	6869.0	-1.2
Algerie	2.9	114.0	58.5	47.9	2266.0	0.1	Japon	0.9	6.6	0.8	92.0	9704.0	3.0
Arabie Saoudite	4.2	111.0	75.4	39.7	10827.0	-10.8	Kenya	4.0	85.0	52.9	59.3	376.0	3.6
Argentine	1.2	44.0	5.3	69.5	2264.0	2.0	Kowait	6.5	33.0	35.9	73.0	20900.0	-0.5
Australie	1.3	10.4	0.0	86.0	9938.0	-1.2	Madagascar	2.7	69.0	38.8	30.4	259.0	0.9
Bahrein	3.8	57.0	20.9	76.3	8960.0	-10.1	Maroc	2.5	104.0	65.0	34.9	864.0	0.6
Bresil	2.2	75.0	23.9	62.3	1853.0	-3.9	Mali	2.8	152.0	86.5	16.7	190.0	1.5
Cameroun	2.4	106.0	55.1	44.5	939.0	6.5	Mexique	2.6	54.0	17.3	70.1	1900.0	-4.6
Canada	1.0	10.0	0.9	93.0	9857.0	3.0	Mozambique	2.7	150.0	66.8	16.1	155.0	-6.9
Chili	1.7	42.0	7.7	85.2	1853.0	-0.5	Nicaragua	4.4	88.0	10.0	52.5	760.0	5.1
Chine	1.4	71.0	31.0	44.0	231.0	10.0	Niger	3.0	143.0	90.2	9.2	330.0	2.5
Coree du Sud	1.6	33.0	8.3	82.1	1716.0	9.3	Nigeria	3.3	133.0	66.0	29.3	807.0	-4.0
Cuba	0.7	16.8	8.9	78.7	2046.0	5.2	Perou	2.8	85.0	19.3	72.0	997.0	-12.0
Egypte	2.7	74.0	58.1	45.8	626.0	6.0	Pologne	0.9	24.6	0.6	77.0	2545.0	4.5
Espagne	0.9	9.6	6.8	88.0	5316.0	2.3		-0.2	11.4	0.5	89.0	5103.0	4.2
Etats Unis	1.0	11.2	0.8	91.0	11732.0	3.3		-0.1	12.0	0.7	87.0	12176.0	1.0
Ethiopie	2.7	145.0	85.0	23.1	140.0	7.4		-0.1	10.1	0.8	83.0	8655.0	3.5
Finlande	0.6	6.5	0.6	98.0	10286.0	5.1	Sénégal	2.6	152.0	77.5	19.2	430.0	2.3
France	0.4	9.1	1.2	86.0	11326.0	0.5	Suède	0.1	7.0	0.6	85.0	13920.0	1.8
Grece	1.1	15.1	11.7	81.0	4060.0	0.3	Suisse	0.6	8.0	0.9	88.0	15522.0	-0.1
Haute Volta	1.7	208.0	88.6	7.6	240.0	3.6	Syrie	3.8	60.0	46.3	50.7	1717.0	5.8
Hongrie	0.0	20.0	0.9	42.0	1963.0	0.9	Turquie	2.1	119.0	31.2	42.0	1491.0	3.0
Inde	1.8	121.0	57.6	71.7	260.0	6.5	URSS	0.9	28.8	0.8	96.0	4562.0	4.0
Indonesie	1.7	99.0	32.3	41.3	488.0	5.0	Venezuela	3.0	40.0	19.0	57.7	3823.0	-2.0
Iran	2.7	105.0	57.2	57.9	2346.0	5.2	Vietnam	2.3	97.0	13.0	59.5	220.0	5.2
Irlande	1.2	11.0	1.0	93.0	4813.0	0.5	Yougoslavie	0.9	31.0	13.0	83.0	2067.0	-1.3
Israel	2.2	15.0	6.7	74.0	4531.0	1.1	10040310116	0.9	51.0	10.2	05.0	2007.0	1.5

Motivation

Visualization

- These are the same data
- under different visualization paradigms
- possible to see groups, relations, outliers, ...



What is a "perfect" method ?

- 1. A bijective mapping ?
- 2. A "nice" mapping ?
- 3. A mapping that preserves distances ?
- 4. A mapping that preserves topology (neighbors) ?
- Importance (and difficulty) to evaluate projections

- Motivation: why nonlinear dimensionality reduction?
- Paradigms
- Distance preservation methods
 - Euclidean distances
 - Graph distances
- Quality assessment
 - Distances, Ranks, and Neighbourhoods
 - Co-ranking Matrix
 - Intrusions and extrusions
 - Existing criteria
 - Unifying framework
- Experiments

Nonlinear projections: the paradigms

- Distance preservation
 - Distances between pairs of points in the original space, should match distances in the projection space
- Topology preservation
 - Neighbors in in the original space, should match neighbors in the projection space
- Information preservation
 - Forget the topology and distances, but pay attention to the reconstruction error

Nonlinear projections: the paradigms

- Distance preservation
 - Distances between pairs of points in the original space, should match distances in the projection space
- Topology preservation
 - Neighbors in in the original space, should match neighbors in the projection space
 - Few algorithms, beside SOM !
- Information preservation
 - Forget the topology and distances, but pay attention to the reconstruction error
 - No geometry, not quite adapted to visualization !

Nonlinear projections: the paradigms

- Distance preservation
 - Distances between pairs of points in the original space, should match distances in the projection space
- Two main research directions:
 - Algebraic (spectral) methods
 - Linear models (possibly with nonlinear distances)
 - + easy calculations
 - often not adapted
 - Nonlinear objective criteria
 - Nonlinear models, more general
 - + more powerful, close to objectives
 - optimization more difficult

- Motivation: why nonlinear dimensionality reduction?
- Paradigms
- Distance preservation methods
 - Euclidean distances
 - Graph distances
- Quality assessment
 - Distances, Ranks, and Neighbourhoods
 - Co-ranking Matrix
 - Intrusions and extrusions
 - Existing criteria
 - Unifying framework
- Experiments

Distance preservation

• Many variations around the same theme

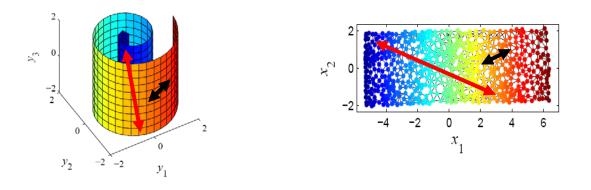
 $d_{y}(i, j) = d(y(i), y(j)), \ y(i), y(j) \in \mathbb{R}^{d} \qquad d_{x}(i, j) = d(x(i), x(j)), \ x(i), x(j) \in \mathbb{R}^{p}$

- The parameters of the method are the locations *x*(*i*)
- The objective (or cost, error, stress function) is some measure of discrepancy between $d_v(i,j)$ and $d_x(i,j)$

Metric multi-dimensional scaling (MDS)

• Metric MDS is roughly equivalent to minimizing

$$E = \sum_{i, j=1}^{N} (d_{y}(i, j) - d_{x}(i, j))^{2}$$



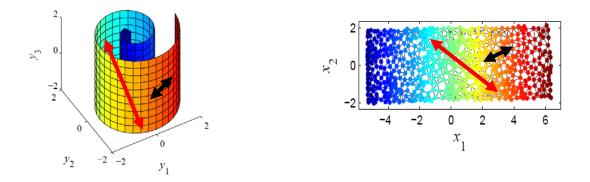
- Problem:
 - large distances contribute more (squared criterion), and
 - large distances are those that need to be enlarged (see

)

Sammon's nonlinear mapping (NLM)

$$E_{NLM} = \sum_{\substack{i=1\\i< j}}^{N} \frac{(d_y(i, j) - d_x(i, j))^2}{d_y(i, j)}$$

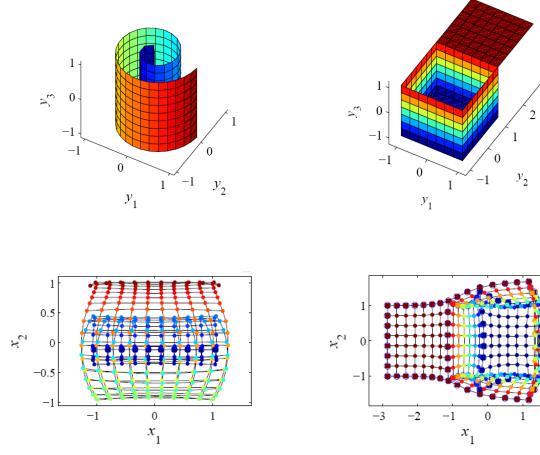
• Idea: to give more weight to the short distances



Intuitively, can be (approximately) preserved, while
 will necessarily be enlarged

Sammon's nonlinear mapping (NLM)

• Examples



3

2

Curvilinear component analysis (CCA)

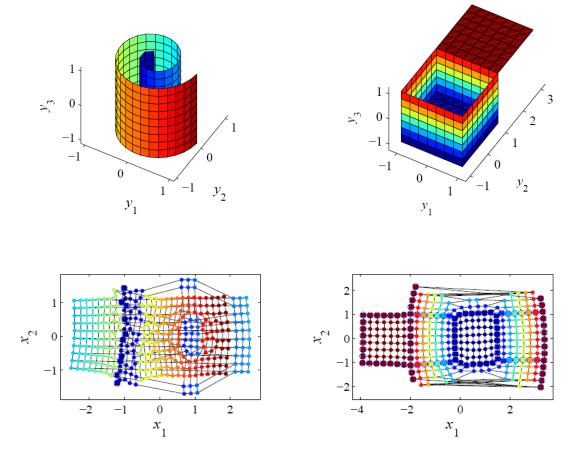
$$E_{CCA} = \sum_{\substack{i=1\\i< j}}^{N} (d_{y}(i, j) - d_{x}(i, j))^{2} F_{\lambda}(d_{x}(i, j))$$

where F_{λ} is a monotonically decreasing function

- Idea: to give more weight to the short distances
- But: to short distances in the projection space $(d_x, \text{ not } d_y!)$
 - This makes the differences for cuts: small d_y , large d_x is now possible!

Curvilinear component analysis (CCA)

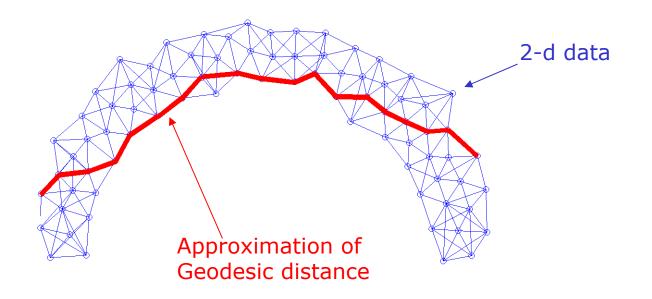
• Examples



[Demartines – Hérault 92]

- Motivation: why nonlinear dimensionality reduction?
- Paradigms
- Distance preservation methods
 - Euclidean distances
 - Graph distances
- Quality assessment
 - Distances, Ranks, and Neighbourhoods
 - Co-ranking Matrix
 - Intrusions and extrusions
 - Existing criteria
 - Unifying framework
- Experiments

Geodesic distances



- How to build the graph from the data?
 - Connect each data to its *k* nearest neighbors, or
 - Connect each data to all other ones in a *ɛ*-ball
 - Ensure connectivity of the graph

Distance preservation: summary

	Euclidean distance	Geodesic distance
No weight	Metric MDS	Isomap
<i>Weights on distances in y space</i>	Sammon's mapping	Geodesic NLM
<i>Weights on distances in x space</i>	Curvilinear component analysis (CCA)	Curvilinear distance analysis (CDA)

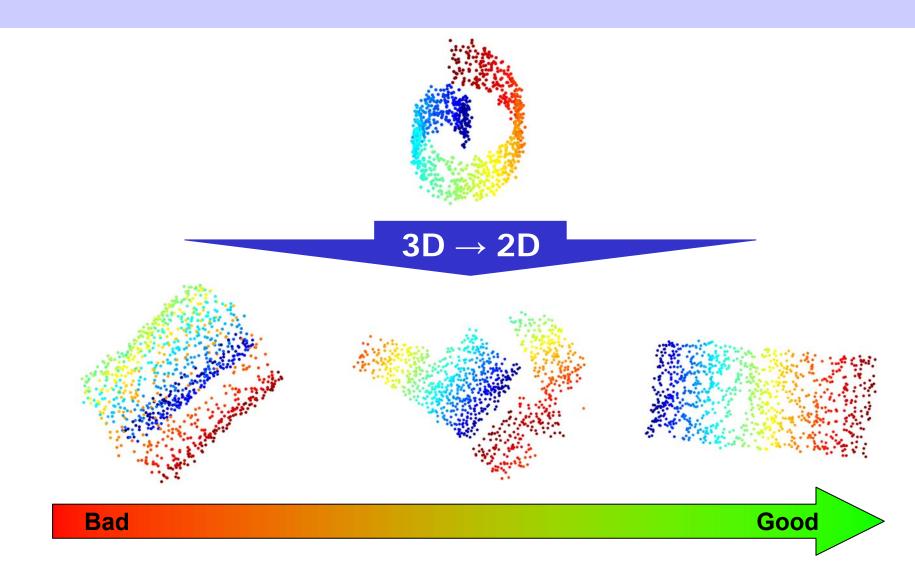
- Motivation: why nonlinear dimensionality reduction?
- Paradigms
- Distance preservation methods
 - Euclidean distances
 - Graph distances
- Quality assessment
 - Distances, Ranks, and Neighbourhoods
 - Co-ranking Matrix
 - Intrusions and extrusions
 - Existing criteria
 - Unifying framework
- Experiments

Performance evaluation

• The key question (in this talk \odot):

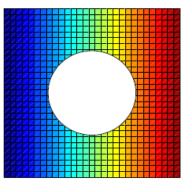
How to evaluate the performances of these methods?

Quality Assessment: Intuition

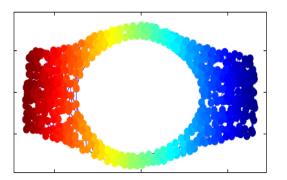


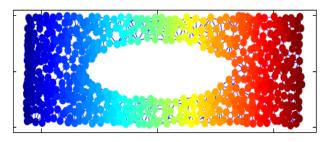
Quality Assessment: difficulty

• A less intuitive assessment. When projecting



is this better





Objective Quality Assessment

- We have:
 - An NLDR method to assess
- Some ideas:
 - Use its objective function
 - Quantify the distance preservation
 - Quantify the 'topology' preservation

Objective Quality Assessment

- We have:
 - An NLDR method to assess
- Some ideas:
 - Use its objective function 😕
 - Quantify the distance preservation (8)
 - Quantify the 'topology' preservation ⁽³⁾

Objective Quality Assessment

- We have:
 - An NLDR method to assess
- Some ideas:
 - Use its objective function 😕
 - Quantify the distance preservation 😕
 - Quantify the 'topology' preservation (2)
- Topology in practice:
 - K-ary neighborhoods
 - Neighborhood ranks
- Literature:

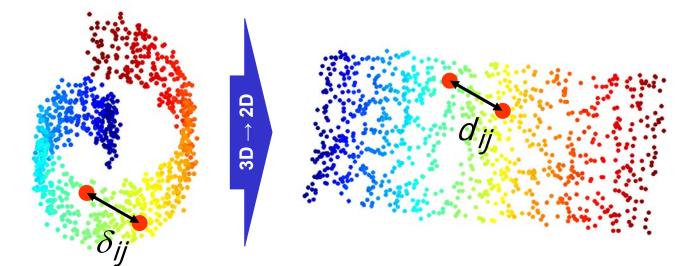
_	2001, Venna & Kaski: trustworthiness & continuity	T&C
_	2006, Chen & Buja: local continuity meta criterion	LCMC

– 2007, Lee & Verleysen: mean relative rank errors MRREs

- Motivation: why nonlinear dimensionality reduction?
- Paradigms
- Distance preservation methods
 - Euclidean distances
 - Graph distances
- Quality assessment
 - Distances, Ranks, and Neighbourhoods
 - Co-ranking Matrix
 - Intrusions and extrusions
 - Existing criteria
 - Unifying framework
- Experiments

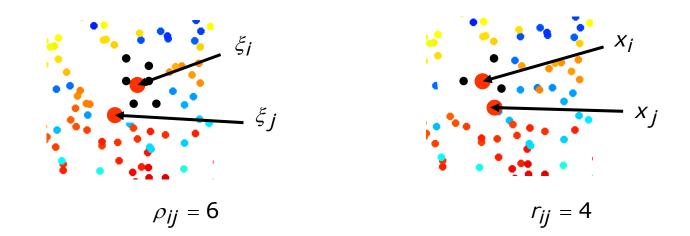
Distances, Ranks, and Neighbourhoods

• Distances: δ_{ij} denotes the distance from y_i to y_j d_{ij} denotes the distance from x_i to x_j $Y = [y_i]_{1 \le i \le N}$ $X = [x_i]_{1 \le i \le N}$



Distances, Ranks, and Neighbourhoods

• Ranks: $\rho_{ij} = |\{k : \delta_{ik} < \delta_{ij}\}$ $r_{ij} = |\{k : d_{ik} < d_{ij}\}$



 Neighborhoods: sets of indexes of black points (up to neighbor K)

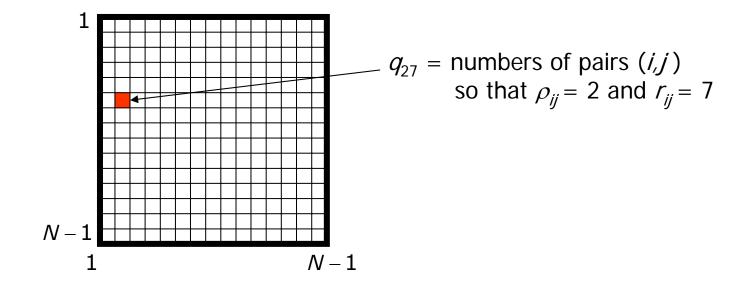
$$v_{j}^{K} = \left| \left\{ j : 1 \le \rho_{jj} < K \right\} \right|$$
$$n_{j}^{K} = \left| \left\{ j : 1 \le r_{jj} < K \right\} \right|$$

Distances, Ranks, and Neighbourhoods

• Co-ranking matrix:

$$Q = [q_{kl}]_{1 \le k, l \le N-1}$$

with $q_{kl} = |\{(i, j) : \rho_{ij} = k \text{ and } r_{ij} = l\}$



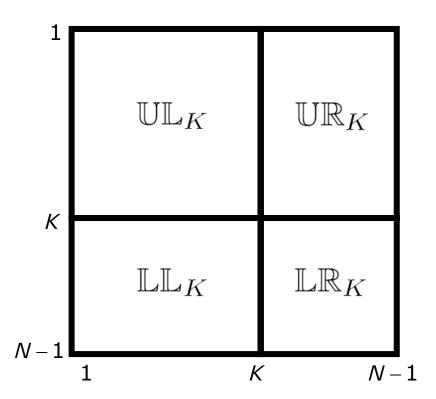
(*Q* is a sum of *N* permutation matrices of size *N*-1)

- Motivation: why nonlinear dimensionality reduction?
- Paradigms
- Distance preservation methods
 - Euclidean distances
 - Graph distances
- Quality assessment
 - Distances, Ranks, and Neighbourhoods
 - Co-ranking Matrix
 - Intrusions and extrusions
 - Existing criteria
 - Unifying framework
- Experiments

Co-ranking Matrix: Blocks

• *K*-ary neighbourhoods

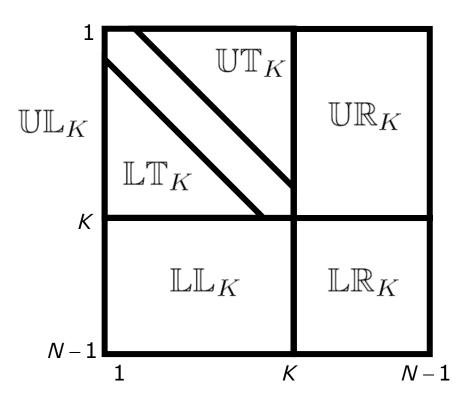
$$\boldsymbol{\mathcal{Q}} = [q_{kl}]_{1 \le k, l \le N-1}$$



Co-ranking Matrix: Blocks

• *K*-ary neighbourhoods

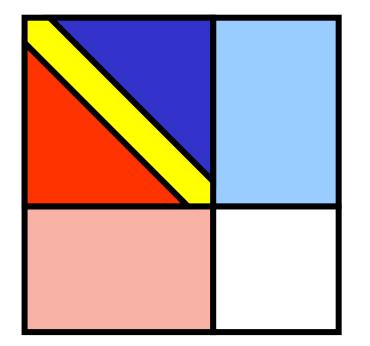
$$\boldsymbol{\mathcal{Q}} = [q_{kl}]_{1 \le k, l \le N-1}$$



Outline

- Motivation: why nonlinear dimensionality reduction?
- Paradigms
- Distance preservation methods
 - Euclidean distances
 - Graph distances
- Quality assessment
 - Distances, Ranks, and Neighbourhoods
 - Co-ranking Matrix
 - Intrusions and extrusions
 - Existing criteria
 - Unifying framework
- Experiments

Intrusions and extrusions



- mild intrusions
- hard intrusions
- mild extrusions

hard extrusions

same rank

Outline

- Motivation: why nonlinear dimensionality reduction?
- Paradigms
- Distance preservation methods
 - Euclidean distances
 - Graph distances
- Quality assessment
 - Distances, Ranks, and Neighbourhoods
 - Co-ranking Matrix
 - Intrusions and extrusions
 - Existing criteria
 - Unifying framework
- Experiments

Existing criteria

- Thrustworthiness and Continuity (Venna and Kaski)
- Mean Relative Rank Errors (Lee and Verleysen)
- Local Continuity Meta Criterion (Chen & Buja)

Trustworthiness & Continuity

- Formulas:
 - trustworthiness

$$W_T(K) = 1 - \frac{2}{G_K} \sum_{i=1}^N \sum_{j \in \mathcal{N}_i^K \setminus v_i^K} \left(\rho_{ij} - K \right)$$

- continuity

hard intrusions

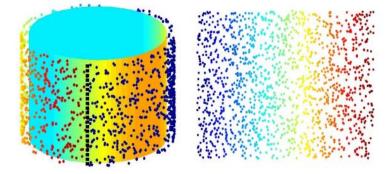
$$W_{C}(K) = 1 - \frac{2}{G_{K}} \sum_{j=1}^{N} \sum_{j \in V_{j}^{K} \setminus n_{j}^{K}} (r_{ij} - K)$$

hard extrusions

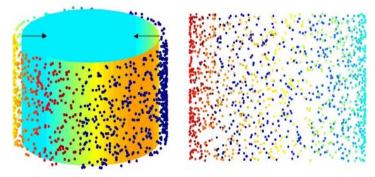
with $G_{K} = N \min\{K(2N - 3K - 1), (N - K)(N - K - 1)\}$

Why two criteria ?

 Because... not obvious to decide if it is better to cut (the projection is not continuous)



or to flatten (the projection is not trusthworthy)



Trustworthiness & Continuity

• Formulas:

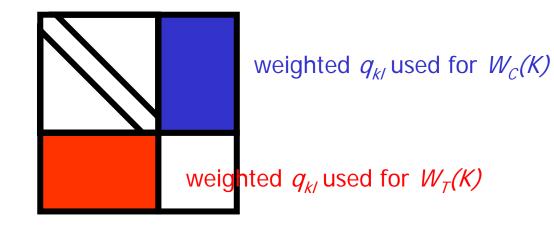
—

- trustworthiness

$$W_{T}(K) = 1 - \frac{2}{G_{K}} \sum_{i=1}^{N} \sum_{j \in n_{i}^{K} \setminus v_{j}^{K}} (\rho_{ij} - K) = 1 - \frac{2}{G_{K}} \sum_{(k, l) \in LL_{K}} (k - K)q_{kl}$$

continuity
$$W_{C}(K) = 1 - \frac{2}{G_{K}} \sum_{i=1}^{N} \sum_{j \in v_{i}^{K} \setminus n_{i}^{K}} (r_{ij} - K) = 1 - \frac{2}{G_{K}} \sum_{(k, l) \in UR_{K}} (l - K)q_{kl}$$

hard extrusions



Trustworthiness & Continuity

$$W_{T}(K) = 1 - \frac{2}{G_{K}} \sum_{i=1}^{N} \sum_{j \in n_{j}^{K} \setminus v_{j}^{K}} \left(\rho_{ij} - K\right) = 1 - \frac{2}{G_{K}} \sum_{(k,l) \in LL_{K}} \sum_{(k,l) \in LL_{K}} W_{C}(K) = 1 - \frac{2}{G_{K}} \sum_{i=1}^{N} \sum_{j \in v_{j}^{K} \setminus n_{j}^{K}} \left(r_{ij} - K\right) = 1 - \frac{2}{G_{K}} \sum_{(k,l) \in UR_{K}} \sum_{(k,l) \in UR_{K}} \left(r_{ij} - K\right) = 1 - \frac{2}{G_{K}} \sum_{(k,l) \in UR_{K}} \sum_{(k,l) \in UR_{K}} \left(r_{k} - K\right) q_{kl}$$

with
$$G_{K} = N \min\{K(2N - 3K - 1), (N - K)(N - K - 1)\}$$

- Properties:
 - Distinguish between points that errouneously
 - enter a neighbourhood \rightarrow trustwortiness
 - quit a neighbourhood \rightarrow continuity
 - Functions of K (higher is better); range: [0,1] ([0.7,1])
 - Elements q_{kl} are weighted

Mean Relative Rank Errors

$$E_{n}(K) = \frac{1}{H_{K}} \sum_{i=1}^{N} \sum_{j \in n_{i}^{K}} \frac{\left|\rho_{ij} - r_{ij}\right|}{\rho_{ij}}$$

$$E_{v}(K) = \frac{1}{H_{K}} \sum_{i=1}^{N} \sum_{j \in v_{i}^{K}} \frac{\left|\rho_{ij} - r_{ij}\right|}{r_{ij}}$$

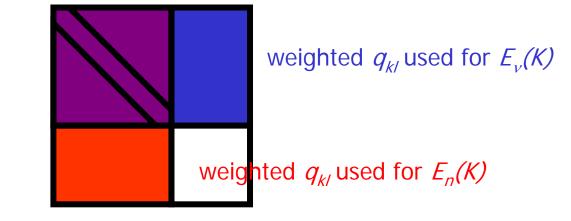
with $H_{K} = N \sum_{k=1}^{K} \frac{\left|N - 2k\right|}{k}$
K-neighborhood in Y space

Mean Relative Rank Errors

$$E_{n}(K) = \frac{1}{H_{K}} \sum_{i=1}^{N} \sum_{j \in n_{i}^{K}} \frac{\left|\rho_{ij} - r_{ij}\right|}{\rho_{ij}} = \frac{1}{H_{K}} \sum_{\substack{(k,l) \in UL_{K} \cup LL_{K}}} \frac{\left|k-l\right|}{l} q_{kl}$$

K-neighborhood in X space
$$E_{v}(K) = \frac{1}{H_{K}} \sum_{i=1}^{N} \sum_{j \in v_{i}^{K}} \frac{\left|\rho_{ij} - r_{ij}\right|}{r_{ij}} = \frac{1}{H_{K}} \sum_{\substack{(k,l) \in UL_{K} \cup UR_{K}}} \frac{\left|k-l\right|}{k} q_{kl}$$

K-neighborhood in Y space



Mean Relative Rank Errors

$$E_{n}(K) = \frac{1}{H_{K}} \sum_{i=1}^{N} \sum_{j \in n_{i}^{K}} \frac{\left|\rho_{ij} - r_{ij}\right|}{\rho_{ij}} = \frac{1}{H_{K}} \sum_{(k,l) \in UL_{K} \cup LL_{K}} \frac{\left|k - l\right|}{l} q_{kl}$$
$$E_{v}(K) = \frac{1}{H_{K}} \sum_{i=1}^{N} \sum_{j \in v_{i}^{K}} \frac{\left|\rho_{ij} - r_{ij}\right|}{r_{ij}} = \frac{1}{H_{K}} \sum_{(k,l) \in UL_{K} \cup UR_{K}} \frac{\left|k - l\right|}{k} q_{kl}$$
with $H_{K} = N \sum_{k=1}^{K} \frac{\left|N - 2k\right|}{k}$

- Properties:
 - Two error types (same idea as in T&C)
 - Functions of *K* (*lower* is better); range: [0,1] ([0,0.3])
 - Stricter than T&C: all rank errors are counted
 - Different weighting of q_{kl}

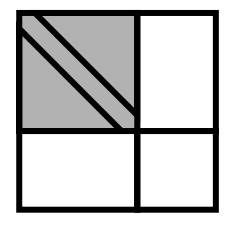
Local Continuity Meta-Criterion

$$U_{LC}(\kappa) = \frac{1}{N\kappa} \sum_{j=1}^{N} \left(\left| n_j^{\kappa} \cap v_j^{\kappa} \right| - \frac{\kappa^2}{N-1} \right)$$

Local Continuity Meta-Criterion

• Formula:

$$U_{LC}(K) = \frac{1}{NK} \sum_{i=1}^{N} \left(\left| n_i^K \cap v_i^K \right| - \frac{K^2}{N-1} \right) = \frac{K}{1-N} + \frac{1}{NK} \sum_{(k,l) \in \mathsf{UL}_K} q_{kl}$$



unweighted q_{kl} used for $U_{LC}(K)$

Local Continuity Meta-Criterion

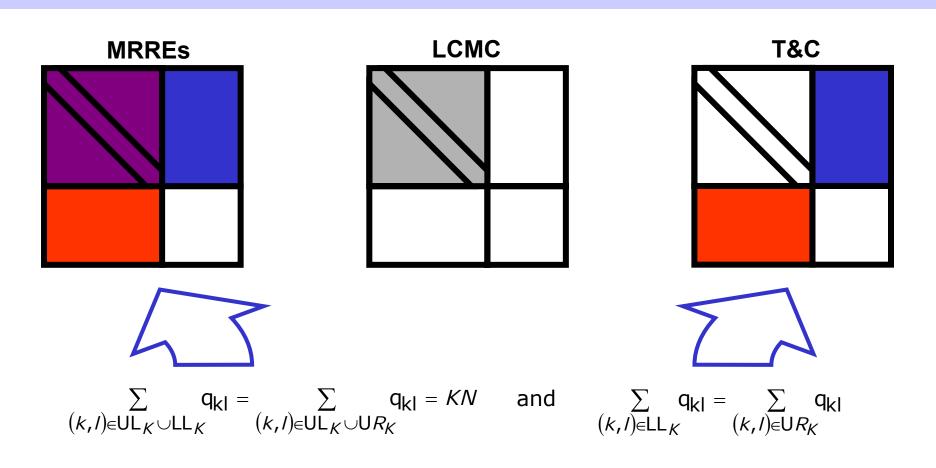
$$U_{LC}(K) = \frac{1}{NK} \sum_{i=1}^{N} \left(\left| n_i^K \cap v_i^K \right| - \frac{K^2}{N-1} \right) = \frac{K}{1-N} + \frac{1}{NK} \sum_{(k,l) \in \mathsf{UL}_K} \mathsf{q}_{\mathsf{k}\mathsf{l}}$$

- Properties
 - Single measure
 - Function of *K* (higher is better); range: [0,1]
 - A priori milder than T&C and MRREs
 - Presence of a baseline term (random neighbourhood overlap)
 - No weighting of q_{kl}

Outline

- Motivation: why nonlinear dimensionality reduction?
- Paradigms
- Distance preservation methods
 - Euclidean distances
 - Graph distances
- Quality assessment
 - Distances, Ranks, and Neighbourhoods
 - Co-ranking Matrix
 - Intrusions and extrusions
 - Existing criteria
 - Unifying framework
- Experiments

Unifying Framework



Unweighted case: only the upper left block is important!

Unifying criteria

 Count *all* intrusions and extrusions mild intrusions
hard intrusions
mild extrusions
hard extrusions
hard extrusions
same rank

Weigh them according to 1) distance to diagonal 2) rank

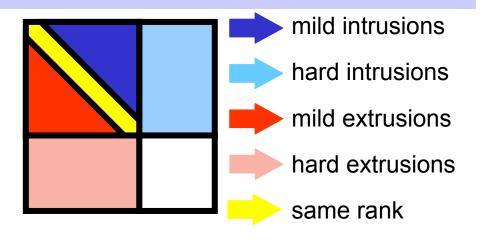
$$W_{\mathcal{N}}^{\mathcal{V},\mathcal{W}}(\mathcal{K}) = \frac{1}{C_{\mathcal{K}}} \sum_{(k,l) \in LT_{\mathcal{K}} \cup \mathsf{LL}_{\mathcal{K}}} \frac{(k-l)^{\mathcal{V}}}{k^{\mathcal{W}}} q_{kl}$$

$$W_X^{V,W}(K) = \frac{1}{C_K} \sum_{(k,l) \in UT_K \cup UR_K} \frac{(l-k)^{V}}{l^{W}} q_{kl}$$

Unifying criteria

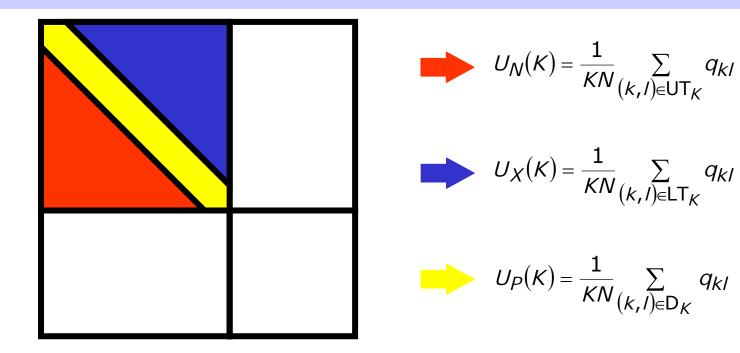
$$W_{N}^{V,W}(K) = \frac{1}{C_{K}} \sum_{(k,l) \in LT_{K} \cup LL_{K}} \frac{(k-l)^{V}}{k^{W}} q_{kl}$$

$$W_X^{V,W}(K) = \frac{1}{C_K} \sum_{(k,l) \in UT_K \cup UR_K} \frac{(l-k)^{V}}{l^{W}} q_{kl}$$

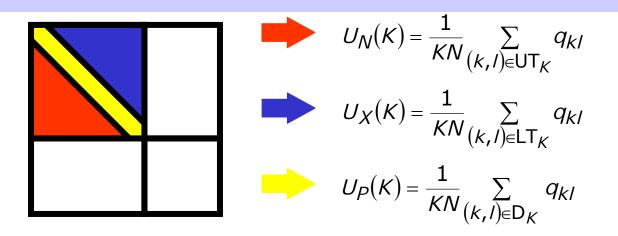


- More or less arbitrary weighting
- But no weighting is useless, because
 # hard K-intrusions = # hard K-extrusions
- \Rightarrow look inside *K*-ary neighborhoods

Unifying Framework



Unifying Framework



• Overall quality of embedding:

$$\mathcal{Q}_{NX}(K) = U_P(K) + U_N(K) + U_X(K) = U_{LC}(K) + \frac{K}{N-1}$$

• Overall "behaviour" of embedding

 $B_{NX}(K) = U_N(K) - U_X(K)$

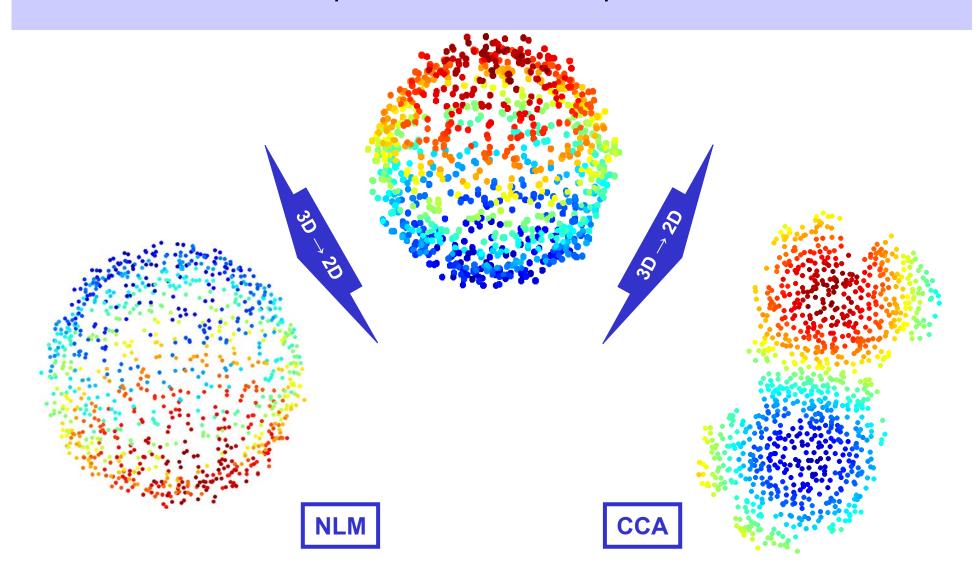
 $B_{NX}(K) > 0$: intrusive $B_{NX}(K) < 0$: extrusive

Outline

- Motivation: why nonlinear dimensionality reduction?
- Paradigms
- Distance preservation methods
 - Euclidean distances
 - Graph distances
- Quality assessment
 - Distances, Ranks, and Neighbourhoods
 - Co-ranking Matrix
 - Intrusions and extrusions
 - Existing criteria
 - Unifying framework
- Experiments

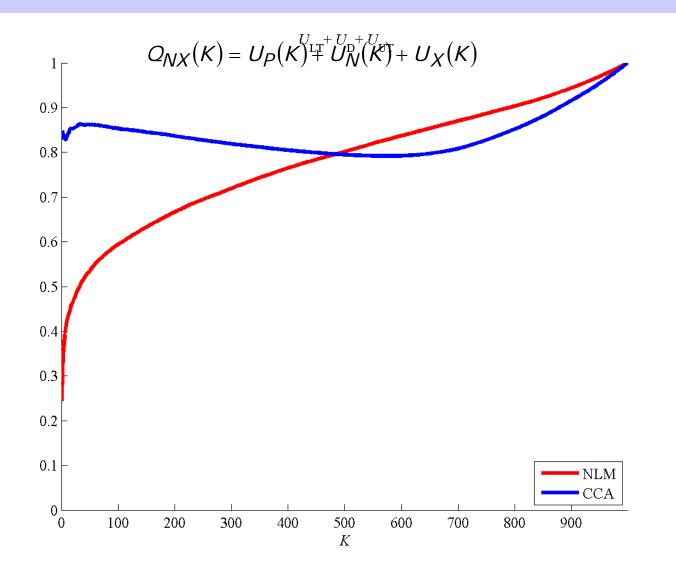
Experiments

Experiment: Hollow Sphere



Experiments

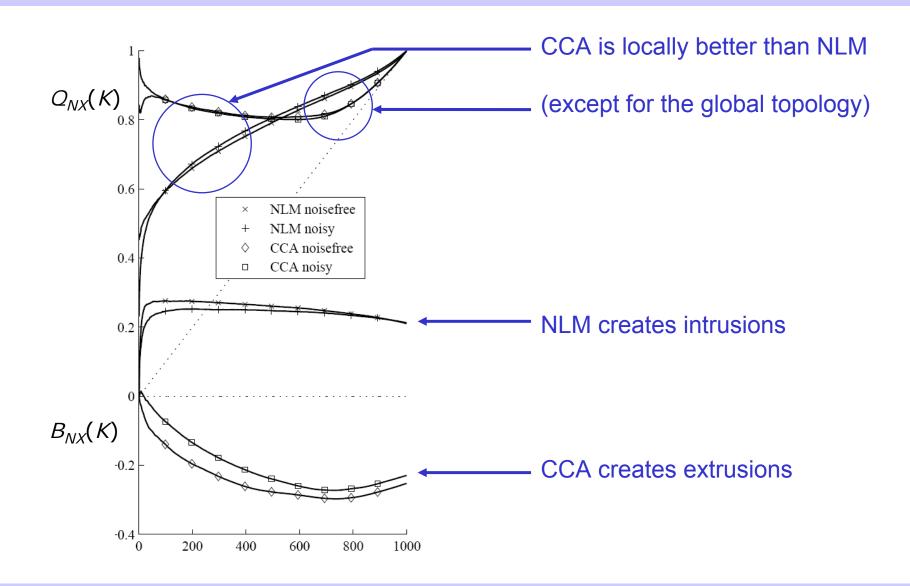
Experiment: Hollow Sphere



60

Experiments

Experiment: Hollow Sphere



Conclusions

Conclusions

- Rank preservation is useful in NLDR QA:
 - More powerful than distance preservation
 - Reflects the appealing idea of 'topology' preservation
- Unifying framework:
 - Relies on the co-ranking matrix
 (≈ Shepard diagram with ranks instead of distances)
 - Involves no (arbitrary) weighting
 - Focuses on the inside of K-ary neighborhoods (otherwise a smart weighting is necessary)
 - Defines three errors:
 - A global error (like LCMC)
 - 'Type I and II' errors (like T&C and MRREs)
- Experiments:
 - They confirm the soundness of the approach
- Future prospect:
 - From rank-based NLDR *QA* to rank-based NLDR *methods*

Nonlinear dimensionality reduction: the book

Nonlinear Dimensionality Reduction Springer, Series: Information Science and Statistics John A. Lee, Michel Verleysen 2007, Approx. 330 p. 8 illus. in color., Hardcover ISBN: 978-0-387-39350-6

Software available at http://www.dice.ucl.ac.be/mlg/index.php?page=NLDR

Thank you for your attention!

If you have any question...

Please visit: http://www.ucl.ac.be/mlg/