ESTIMATING BIVARIATE TAILS

Clémentine PRIEUR ${ }^{\text {a }}$
joint work with
Elena DI BERNARDINO ${ }^{\text {b }}$ and Véronique MAUME-DESCHAMPS ${ }^{\text {b }}$
${ }^{\text {a }}$ Université Joseph Fourier (Grenoble)
${ }^{\mathrm{b}}$ ISFA, Université Lyon 1

Framework

Goal : estimating the tail of a bivariate distribution function.
Idea : a general extension of the Peaks-Over-Threshold method.

Tools :

- a two-dimensional version of the Pickands-Balkema-de Haan Theorem,
- Yuri \& Wüthrich's approach of the tail dependence.

Key words : Extreme Value Theory, Peaks Over Threshold method, Pickands-Balkema-de Haan Theorem, tail dependence.

Contents

(1) One-dimensional results

- The univariate POT method
(2) In dimension 2
- The framework
- 2D Pickands-Balkema-de Haan Theorem
(3) Estimating the tail of bivariate distributions
- Construction of the bivariate estimator
- Convergence results
(4) Comparison with Ledford \& Tawn's model
(5) Simulation Study

Contents

(1) One-dimensional results

- The univariate POT method
(2) In dimension 2
- The framework
- 2D Pickands-Balkema-de Haan Theorem
(3) Estimating the tail of bivariate distributions
- Construction of the bivariate estimator
- Convergence results

4 Comparison with Ledford \& Tawn's model
(5) Simulation Study

Generalized Pareto distribution

Main idea of POT : use of the generalized Pareto distribution (1) to approximate the distribution of excesses over thresholds.

$$
V_{k, \sigma}(x):= \begin{cases}1-\left(1-\frac{k x}{\sigma}\right)^{\frac{1}{k}}, & \text { if } k \neq 0, \sigma>0, \tag{1}\\ 1-\mathrm{e}^{\frac{-x}{\sigma}}, & \text { if } k=0, \sigma>0,\end{cases}
$$

and $x \geq 0$ for $k \leq 0$ or $0 \leq x<\frac{\sigma}{k}$ for $k>0$.

- Let X_{1}, X_{2}, \ldots be a sequence of i.i.d random variables with unknown distribution function F.
- Fix a threshold u. For $x>u$, decompose F as

$$
F(x)=\mathbb{P}[X \leq x]=(1-\mathbb{P}[X \leq u]) F_{u}(x-u)+\mathbb{P}[X \leq u],
$$

where $F_{u}(x)=\mathbb{P}[X \leq x+u \mid X>u]$.

Fisher-Tippet Theorem

Theorem (Fisher-Tippet Theorem)

Let $X_{1}, X_{2}, \ldots, X_{n}$ be an i.i.d. sequence with common d.f. F. If there exist a sequence of positive numbers $\left(a_{n}\right)_{n>0}$ and a sequence $\left(b_{n}\right)_{n>0}$ of real numbers such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathbb{P}\left[\frac{\max \left\{X_{1}, X_{2}, \ldots, X_{n}\right\}-b_{n}}{a_{n}} \leq x\right]=H_{k}(x), \quad x \in \mathbb{R} \tag{2}
\end{equation*}
$$

for a non-degenerate distribution function $H_{k}(x)$, then $H_{k}(x)$ is a member of the Generalized Extreme Value Distribution family

$$
H_{k}(x)= \begin{cases}\exp \left(-(1-k x)^{\frac{1}{k}}\right), & \text { if } k \neq 0, \\ \exp \left(-\mathrm{e}^{-x}\right), & \text { if } k=0,\end{cases}
$$

where $1-k x>0, k \in \mathbb{R}$. We write $F \in \operatorname{MDA}\left(H_{k}\right)$.
$k<0$ Fréchet, $k=0$ Gumbel, $k>0$ Weibull.

One-dimensional Pickands-Balkema-de Haan Theorem

Let

- $F_{u}(x)=\mathbb{P}[X-u \leq x \mid X>u]$,
- $x_{F}:=\sup \{x \in \mathbb{R} \mid F(x)<1\}$ (i.e. x_{F} is the right endpoint of F).

Theorem (Pickands-Balkema-de Haan Theorem)

$$
F \in \operatorname{MDA}\left(H_{k}\right) \Leftrightarrow \lim _{u \rightarrow x_{F}} \sup _{0 \leq x<x_{F}-u}\left|F_{u}(x)-V_{k, \sigma(u)}(x)\right|=0 .
$$

We deduce from the Pickands-Balkema-de Haan Theorem the POT estimate in the univariate case

$$
\widehat{F}^{*}(x)=\left(1-\widehat{F}_{X}(u)\right) V_{\widehat{k}, \widehat{\sigma}}(x-u)+\widehat{F}_{X}(u), \quad \text { for } x>u
$$

References: MacNeil $(1997,1999)$ and references therein.

Contents

(1) One-dimensional results

- The univariate POT method
(2) In dimension 2
- The framework
- 2D Pickands-Balkema-de Haan Theorem
(3) Estimating the tail of bivariate distributions
- Construction of the bivariate estimator
- Convergence results

4 Comparison with Ledford \& Tawn's model
(5) Simulation Study

Framework

Setting :

- X, Y two real valued r.v. with continuous df F_{X} and F_{Y},
- the dependence between X and Y is described by a continuous and symmetric copula C.

Notation and definitions :

Survival Copula
$\forall\left(u_{1}, u_{2}\right) \in[0,1]^{2}, C^{*}\left(u_{1}, u_{2}\right)=u_{1}+u_{2}-1+C\left(1-u_{1}, 1-u_{2}\right)$.
Upper-tail dependence copula $X, Y \sim \mathcal{U}[0,1]$, with symmetric C, $u \in[0,1) / C^{*}(1-u, 1-u)>0$. Then, $\forall(x, y) \in[0,1]^{2}$, one defines

$$
C_{u}^{u p}(x, y):=\mathbb{P}\left[X \leq \widetilde{F}_{u}^{-1}(x), Y \leq \widetilde{F}_{u}^{-1}(y) \mid X>u, Y>u\right]
$$

with $\widetilde{F}_{u}(x):=\mathbb{P}[X \leq x \mid X>u, Y>u]=1-\frac{C^{*}(1-x \vee u, 1-u)}{C^{*}(1-u, 1-u)}$.

Modeling upper tail, Yuri \& Wütrich's approach

Theorem (Upper-tail Theorem; Juri and Wüthrich (2003))

Let C be a symmetric copula such that $C^{*}(1-u, 1-u)>0$, for all $u>0$. Furthermore, assume that there is a strictly increasing continuous function $g:[0, \infty) \rightarrow[0, \infty)$ such that

$$
\lim _{u \rightarrow 1} \frac{C^{*}(x(1-u), 1-u)}{C^{*}(1-u, 1-u)}=g(x), \quad x \in[0, \infty) .
$$

Then, there exists a $\theta>0$ such that $g(x)=x^{\theta} g\left(\frac{1}{x}\right)$ for all $x \in(0, \infty)$. Further, for all $(x, y) \in[0,1]^{2}$

$$
\begin{equation*}
\lim _{u \rightarrow 1} C_{u}^{u p}(x, y)=x+y-1+G\left(g^{-1}(1-x), g^{-1}(1-y)\right):=C^{* G}(x, y), \tag{3}
\end{equation*}
$$

with $G(x, y):=y^{\theta} g\left(\frac{x}{y}\right) \forall(x, y) \in(0,1]^{2}$ and $G: \equiv 0$ on $[0,1]^{2} \backslash(0,1]^{2}$.

Auxiliary result

Proposition (Embrechts, Kluppelberg \& Mikosch, 1997)

$F_{X} \in \operatorname{MDA}\left(H_{k}\right)$ is equivalent to the existence of a positive measurable function $a(\cdot)$ such that, for $1-k x>0$ and $k \in \mathbb{R}$,

$$
\lim _{u \rightarrow x_{F}} \frac{1-F_{X}(u+x a(u))}{1-F_{X}(u)}= \begin{cases}(1-k x)^{\frac{1}{k},}, & \text { if } k \neq 0 \tag{4}\\ \mathrm{e}^{-x}, & \text { if } k=0\end{cases}
$$

$[(3)$ and (4)] $\Rightarrow[$ a $2 D$ version of the Pickands-Balkema-de Haan Theorem]

- Juri \& Wüthrich (2003) for a symmetric C and if $F_{X}=F_{Y}$,
- Di Bernardino, Maume-Deschamps \& P. (2010) for a symmetric C even if $F_{X} \neq F_{Y}$.

Symmetric copula $C, F_{X} \neq F_{Y}$

Theorem (2D Pickands-Balkema-de Haan Theorem)

X, Y real valued r.v. with continuous df $F_{X} \neq F_{Y}, C$ a symmetric copula.
Assume $F_{X} \in \operatorname{MDA}\left(H_{k_{1}}\right), F_{Y} \in \operatorname{MDA}\left(H_{k_{2}}\right)$ and $\exists g$ such that C satisfies the assumptions of the Upper-tail Theorem. Define

- $u_{Y}=F_{Y}^{-1}\left(F_{X}(u)\right)$,
- $x_{F_{X}}:=\sup \left\{x \in \mathbb{R} \mid F_{X}(x)<1\right\}$,
- $x_{F_{Y}}:=\sup \left\{y \in \mathbb{R} \mid F_{Y}(y)<1\right\}$,
- $\mathscr{A}:=\left\{(x, y): 0<x \leq x_{F_{X}}-u, 0<y \leq x_{F_{Y}}-u_{Y}\right\}$.

Then $\exists a_{i}(\cdot), i=1,2$ as in (4) such that

$$
\sup _{\mathscr{A}} \mid \mathbb{P}\left[X-u \leq x, Y-u_{Y} \leq y \mid X>u, Y>u_{Y}\right]
$$

$$
-C^{* G}\left(1-g\left(1-V_{k_{1}, a_{1}(u)}(x)\right), 1-g\left(1-V_{k_{\mathbf{2}}, a_{\mathbf{2}}\left(u_{Y}\right)}(y)\right)\right) \mid \underset{u \rightarrow x_{F_{X}}}{ } 0
$$

Symmetric copula $C, F_{X} \neq F_{Y}$

From (3), the term

$$
\begin{aligned}
& C^{* G}\left(1-g\left(1-V_{k_{1}, a_{1}(u)}(x)\right), 1-g\left(1-V_{k_{2}, a_{2}\left(u_{\gamma}\right)}(y)\right)\right) \text { is equal to } \\
& \left.\begin{array}{c}
1-g\left(1-V_{k_{1}, a_{1}(u)}(x)\right)-g\left(1-V_{k_{2}, a_{2}(u r)}(y)\right) \\
+G\left(1-V_{k_{1}, a_{1}}(u)\right.
\end{array}(x), 1-V_{k_{2}, a_{2}\left(u_{\gamma}\right)}(y)\right) .
\end{aligned}
$$

Contents

(1) One-dimensional results

- The univariate POT method
(2) In dimension 2
- The framework
- 2D Pickands-Balkema-de Haan Theorem
(3) Estimating the tail of bivariate distributions
- Construction of the bivariate estimator
- Convergence results
(4) Comparison with Ledford \& Tawn's model
(5) Simulation Study

A new bivariate tail estimator

Context : F bivariate df with continuous marginals $F_{X}, F_{Y} . F$ is assumed to have a stable tail dependence function $/$ that is $\forall x, y \geq 0$, the following limit exists

$$
\lim _{t \rightarrow 0} t^{-1} \mathbb{P}\left(1-F_{X}(X) \leq t x \text { or } 1-F_{Y}(Y) \leq t y\right)=I(x, y)
$$

Then define

$$
\lim _{t \rightarrow 0} t^{-1} \mathbb{P}\left(1-F_{X}(X) \leq t x, 1-F_{Y}(Y) \leq t y\right)=R(x, y) .
$$

We have $\forall x, y \geq 0, R(x, y)=x+y-I(x, y)$.
Asymptotic dependence $R(1,1) \neq 0$.
Asymptotic independence $\forall x, y \geq 0, I(x, y)=x+y$. It is equivalent to $R(1,1)=0$.

Asymptotic dependence, symmetric C

Uper Tail Theorem of Juri \& Wüthrich (2003) holds with

$$
g(x)=\frac{x+1-I(x, 1)}{2-I(1,1)}=\frac{R(x, 1)}{R(1,1)}, G(x, y)=\frac{x+y-I(x, y)}{2-I(1,1)}=\frac{R(x, y)}{R(1,1)} .
$$

Moreover $\forall x>0, g(x)=x g(1 / x)$ that is $\theta=1$.
We estimate $g(x)$ with the estimator of $/$ in Einmahl, Krajina, Serger (2008) :

$$
\left.\widehat{l}_{n}(x, y)=\frac{1}{k_{n}} \sum_{i=1}^{n} 1_{\left\{R\left(X_{i}\right)>n-k_{n} x+1\right.} \text { or } R\left(Y_{i}\right)>n-k_{n} y+1\right\},
$$

where $R\left(X_{i}\right)$ is the rank of X_{i} among $\left(X_{1}, \ldots, X_{n}\right)$, and $R\left(Y_{i}\right)$ is the rank of Y_{i} among $\left(Y_{1}, \ldots, Y_{n}\right), i=1, \ldots, n$.

Estimating θ

We estimate $g(x)$ by $\hat{g}(x)=\frac{x+1-\hat{l}_{n}(x, 1)}{2-\hat{l}_{n}(1,1)}$.
We estimate $G(x, y)$ by $\hat{G}(x, y)=\frac{x+y-\hat{l}_{n}(x, y)}{2-\hat{l}_{n}(1,1)}$.
Finally, we estimate the unknown parameter θ by

$$
\hat{\theta}=\frac{\log \hat{g}(x)-\log \hat{g}(1 / x)}{\log x}
$$

In practice, k is "optimized" for each value of x.

On simulations

Case 1 Burr(1) margins, $C(u, v)$ Gumbel, $x=5.10$ samples of size $n=2000$.

Figure: Copula Gumbel (parameter 2).

On simulations

Case 2 Burr(1) margins, $C(u, v)$ Survival Clayton, $x=5$. 10 samples of size $n=2000$.

Figure: Copula Survival Clayton (parameter 1).

On simulations

Case 3 Burr(1) margins, $C(u, v)=u v$ (independent copula), $x=3.10$ samples of size $n=2000$.

Figure: Independent Copula.

New tail estimator

For a threshold u define $\widehat{u}_{Y}=\widehat{F}_{Y}^{-1}\left(\widehat{F}_{X}(u)\right)$.
Then, for $\widehat{k}_{X}, \widehat{\sigma}_{X}$ (resp. $\widehat{k}_{Y}, \widehat{\sigma}_{Y}$) the MLE based on the excesses of X (resp. Y),

New tail estimator

For a threshold u define $\widehat{u}_{Y}=\widehat{F}_{Y}^{-1}\left(\widehat{F}_{X}(u)\right)$.
Then, for $\widehat{k}_{X}, \widehat{\sigma}_{X}$ (resp. $\widehat{k}_{Y}, \widehat{\sigma}_{Y}$) the MLE based on the excesses of X (resp. Y), we estimate $F(x, y)$ by
$\widehat{F}^{*}(x, y)=A_{n}\left(B_{n}+C_{n}\right)+\widehat{F}_{1}^{*}(u, y)+\widehat{F}_{2}^{*}\left(x, \widehat{u}_{Y}\right)-\frac{1}{n} \sum_{i=1}^{n} 1_{\left\{X_{i} \leq u, Y_{i} \leq \widehat{u}_{Y}\right\}}$ with

- $A_{n}=\frac{1}{n} \sum_{i=1}^{n} 1_{\left\{X_{i}>u, Y_{i}>\widehat{u}_{\gamma}\right\}}$,
- $B_{n}=1-\widehat{g}_{n}\left(1-V_{\widehat{k}_{\boldsymbol{X}}, \widehat{\sigma}_{X}}(x-u)\right)-\widehat{g}_{n}\left(1-V_{\widehat{k}_{\boldsymbol{Y}}, \widehat{\sigma}_{Y}}\left(y-\widehat{u}{ }_{Y}\right)\right)$,
- $C_{n}=\widehat{G}_{n}\left(1-V_{\widehat{k}_{x}, \widehat{\sigma}_{X}}(x-u), 1-V_{\widehat{k}_{Y}, \widehat{\sigma}_{Y}}\left(y-\widehat{u}_{Y}\right)\right)$,
- $\widehat{F}_{1}^{*}(u, y)=\exp \left\{-\widehat{I}_{n}\left(-\log \left(\widehat{F_{X}}(u)\right),-\log \left({\widehat{F_{Y}}}^{*}(y)\right)\right)\right\}$,
- $\widehat{F}_{2}^{*}\left(x, \widehat{u}_{Y}\right)=\exp \left\{-\widehat{I}_{n}\left(-\log \left({\widehat{F_{X}}}^{*}(x)\right),-\log \left(\widehat{F}_{Y}\left(\widehat{u}_{Y}\right)\right)\right)\right\}$

New tail estimator

For a threshold u define $\widehat{u}_{Y}=\widehat{F}_{Y}^{-1}\left(\widehat{F}_{X}(u)\right)$.
Then, for $\widehat{k}_{X}, \widehat{\sigma}_{X}$ (resp. $\widehat{k}_{Y}, \widehat{\sigma}_{Y}$) the MLE based on the excesses of X (resp. Y), we estimate $F(x, y)$ by
$\widehat{F}^{*}(x, y)=A_{n}\left(B_{n}+C_{n}\right)+\widehat{F}_{1}^{*}(u, y)+\widehat{F}_{2}^{*}\left(x, \widehat{u}_{Y}\right)-\frac{1}{n} \sum_{i=1}^{n} 1_{\left\{x_{i} \leq u, Y_{i} \leq \widehat{u}_{Y}\right\}}$ with

- $A_{n}=\frac{1}{n} \sum_{i=1}^{n} 1_{\left\{X_{i}>u, Y_{i}>\widehat{u}_{Y}\right\}}$,
- $B_{n}=1-\widehat{g_{n}}\left(1-V_{\widehat{k}_{X}, \widehat{\sigma}_{X}}(x-u)\right)-\widehat{g_{n}}\left(1-V_{\widehat{k}_{Y}, \widehat{\sigma}_{Y}}\left(y-\widehat{u}_{Y}\right)\right)$,
- $C_{n}=\widehat{G}_{n}\left(1-V_{\widehat{k}_{\boldsymbol{X}}, \widehat{\sigma}_{X}}(x-u), 1-V_{\widehat{k}_{Y}, \widehat{\sigma}_{Y}}\left(y-\widehat{u}_{Y}\right)\right)$,
- $\widehat{F}_{1}^{*}(u, y)=\exp \left\{-\widehat{l}_{n}\left(-\log \left(\widehat{F_{X}}(u)\right),-\log \left({\widehat{F_{Y}}}^{*}(y)\right)\right)\right\}$.
- $\widehat{F}_{2}^{*}\left(x, \widehat{u}_{Y}\right)=\exp \left\{-\widehat{T}_{n}\left(-\log \left(\widehat{F}_{X}^{*}(x)\right),-\log \left(\widehat{F_{Y}}\left(\widehat{U}_{Y}\right)\right)\right)\right\}$

New tail estimator

For a threshold u define $\widehat{u}_{Y}=\widehat{F}_{Y}^{-1}\left(\widehat{F}_{X}(u)\right)$.
Then, for $\hat{k}_{X}, \widehat{\sigma}_{X}$ (resp. $\widehat{k}_{Y}, \widehat{\sigma}_{Y}$) the MLE based on the excesses of X (resp. Y), we estimate $F(x, y)$ by

$$
\widehat{F}^{*}(x, y)=A_{n}\left(B_{n}+C_{n}\right)+\widehat{F}_{1}^{*}(u, y)+\widehat{F}_{2}^{*}\left(x, \widehat{u}_{Y}\right)-\frac{1}{n} \sum_{i=1}^{n} 1_{\left\{x_{i} \leq u, Y_{i} \leq \widehat{u}_{Y}\right\}}
$$

with

- $A_{n}=\frac{1}{n} \sum_{i=1}^{n} 1_{\left\{X_{i}>u, Y_{i}>\widehat{u}_{Y}\right\}}$,
- $B_{n}=1-\widehat{g}_{n}\left(1-V_{\widehat{k}_{\boldsymbol{X}}, \widehat{\sigma}_{\boldsymbol{X}}}(x-u)\right)-\widehat{g}_{n}\left(1-V_{\widehat{k}_{\boldsymbol{Y}}, \widehat{\sigma}_{\boldsymbol{Y}}}\left(y-\widehat{u}_{Y}\right)\right)$,
- $C_{n}=\widehat{G}_{n}\left(1-V_{\widehat{k}_{X}, \widehat{\sigma}_{X}}(x-u), 1-V_{\widehat{k}_{Y}, \widehat{\sigma}_{Y}}\left(y-\widehat{u}_{Y}\right)\right)$,
- $\widehat{F}_{1}^{*}(u, y)=\exp \left\{-\widehat{I}_{n}\left(-\log \left(\widehat{F_{X}}(u)\right),-\log \left({\widehat{F_{Y}}}^{*}(y)\right)\right)\right\}$,
- $\widehat{F}_{2}^{*}\left(x, \widehat{u}_{Y}\right)=\exp \left\{-\widehat{I}_{n}\left(-\log \left(\widehat{F}_{X}^{*}(x)\right),-\log \left(\widehat{F}_{Y}\left(\widehat{u}_{Y}\right)\right)\right)\right\}$

New tail estimator

For a threshold u define $\widehat{u}_{Y}=\widehat{F}_{Y}^{-1}\left(\widehat{F}_{X}(u)\right)$.
Then, for $\hat{k}_{X}, \widehat{\sigma}_{X}$ (resp. $\widehat{k}_{Y}, \widehat{\sigma}_{Y}$) the MLE based on the excesses of X (resp. Y), we estimate $F(x, y)$ by

$$
\widehat{F}^{*}(x, y)=A_{n}\left(B_{n}+C_{n}\right)+\widehat{F}_{1}^{*}(u, y)+\widehat{F}_{2}^{*}\left(x, \widehat{u}_{Y}\right)-\frac{1}{n} \sum_{i=1}^{n} 1_{\left\{x_{i} \leq u, Y_{i} \leq \widehat{u}_{Y}\right\}}
$$

with

- $A_{n}=\frac{1}{n} \sum_{i=1}^{n} 1_{\left\{X_{i}>u, Y_{i}>\widehat{u}_{Y}\right\}}$,
- $B_{n}=1-\widehat{g}_{n}\left(1-V_{\widehat{k}_{\boldsymbol{X}}, \widehat{\sigma}_{X}}(x-u)\right)-\widehat{g}_{n}\left(1-V_{\widehat{k}_{\boldsymbol{k}}, \widehat{\sigma}_{Y}}\left(y-\widehat{u}_{Y}\right)\right)$,
- $C_{n}=\widehat{G}_{n}\left(1-V_{\widehat{k}_{\mathbf{X}}, \widehat{\sigma}_{X}}(x-u), 1-V_{\widehat{k}_{\mathbf{Y}}, \widehat{\sigma}_{Y}}\left(y-\widehat{u}_{Y}\right)\right)$,
- $\widehat{F}_{1}^{*}(u, y)=\exp \left\{-\widehat{T}_{n}\left(-\log \left(\widehat{F_{X}}(u)\right),-\log \left(\widehat{F}_{Y}{ }^{*}(y)\right)\right)\right\}$,
- $\widehat{F}_{2}^{*}\left(x, \widehat{u}_{Y}\right)=\exp \left\{-\widehat{I}_{n}\left(-\log \left(\widehat{F}_{X}^{*}(x)\right),-\log \left(\widehat{F}_{Y}\left(\widehat{u}_{Y}\right)\right)\right)\right\}$.

New tail estimator

For a threshold u define $\widehat{u}_{Y}=\widehat{F}_{Y}^{-1}\left(\widehat{F}_{X}(u)\right)$.
Then, for $\hat{k}_{X}, \widehat{\sigma}_{X}$ (resp. $\widehat{k}_{Y}, \widehat{\sigma}_{Y}$) the MLE based on the excesses of X (resp. Y), we estimate $F(x, y)$ by

$$
\widehat{F}^{*}(x, y)=A_{n}\left(B_{n}+C_{n}\right)+\widehat{F}_{1}^{*}(u, y)+\widehat{F}_{2}^{*}\left(x, \widehat{u}_{Y}\right)-\frac{1}{n} \sum_{i=1}^{n} 1_{\left\{x_{i} \leq u, Y_{i} \leq \widehat{u}_{Y}\right\}}
$$

with

- $A_{n}=\frac{1}{n} \sum_{i=1}^{n} 1_{\left\{X_{i}>u, Y_{i}>\widehat{u}_{Y}\right\}}$,
- $B_{n}=1-\widehat{g}_{n}\left(1-V_{\widehat{k}_{\boldsymbol{X}}, \widehat{\sigma}_{\boldsymbol{X}}}(x-u)\right)-\widehat{g}_{n}\left(1-V_{\widehat{k}_{\boldsymbol{Y}}, \widehat{\sigma}_{\boldsymbol{Y}}}\left(y-\widehat{u}_{Y}\right)\right)$,
- $C_{n}=\widehat{G}_{n}\left(1-V_{\widehat{k}_{\mathbf{X}}, \widehat{\sigma}_{X}}(x-u), 1-V_{\widehat{k}_{\mathbf{Y}}, \widehat{\sigma}_{Y}}\left(y-\widehat{u}_{Y}\right)\right)$,
- $\widehat{F}_{1}^{*}(u, y)=\exp \left\{-\widehat{I}_{n}\left(-\log \left(\widehat{F_{X}}(u)\right),-\log \left(\widehat{F_{Y}}(y)\right)\right)\right\}$,

New tail estimator

For a threshold u define $\widehat{u}_{Y}=\widehat{F}_{Y}^{-1}\left(\widehat{F}_{X}(u)\right)$.
Then, for $\hat{k}_{X}, \widehat{\sigma}_{X}$ (resp. $\widehat{k}_{Y}, \widehat{\sigma}_{Y}$) the MLE based on the excesses of X (resp. Y), we estimate $F(x, y)$ by

$$
\widehat{F}^{*}(x, y)=A_{n}\left(B_{n}+C_{n}\right)+\widehat{F}_{1}^{*}(u, y)+\widehat{F}_{2}^{*}\left(x, \widehat{u}_{Y}\right)-\frac{1}{n} \sum_{i=1}^{n} 1_{\left\{x_{i} \leq u, Y_{i} \leq \widehat{u}_{Y}\right\}}
$$

with

- $A_{n}=\frac{1}{n} \sum_{i=1}^{n} 1_{\left\{X_{i}>u, Y_{i}>\widehat{u}_{Y}\right\}}$,
- $B_{n}=1-\widehat{g}_{n}\left(1-V_{\widehat{k}_{\boldsymbol{X}}, \widehat{\sigma}_{\boldsymbol{X}}}(x-u)\right)-\widehat{g}_{n}\left(1-V_{\widehat{k}_{\boldsymbol{Y}}, \widehat{\sigma}_{\boldsymbol{Y}}}\left(y-\widehat{u}_{Y}\right)\right)$,
- $C_{n}=\widehat{G}_{n}\left(1-V_{\widehat{k}_{\mathbf{X}}, \widehat{\sigma}_{X}}(x-u), 1-V_{\widehat{k}_{\mathbf{Y}}, \widehat{\sigma}_{Y}}\left(y-\widehat{u}_{Y}\right)\right)$,
- $\widehat{F}_{1}^{*}(u, y)=\exp \left\{-\widehat{I}_{n}\left(-\log \left(\widehat{F_{X}}(u)\right),-\log \left({\widehat{F_{Y}}}^{*}(y)\right)\right)\right\}$,
- $\widehat{F}_{2}^{*}\left(x, \widehat{u}_{Y}\right)=\exp \left\{-\widehat{I}_{n}\left(-\log \left(\widehat{F}_{X}^{*}(x)\right),-\log \left(\widehat{F_{Y}}\left(\widehat{u}_{Y}\right)\right)\right)\right\}$.

Main steps of the construction

Distribution of excesses above u and u_{Y} :
$F_{u, u_{Y}}(x, y):=\mathbb{P}\left(X-u \leq x, Y-u_{Y} \leq y \mid X>u, Y>u_{Y}\right)$.
Define $\bar{F}(x, y)=\mathbb{P}(X>x, Y>y)$.
Then $\forall x>u, y>u_{Y}$,

Main steps :

- using 2D Pickands-Balkema-de Haan Theorem, $F_{u, u_{\gamma}}\left(x-u_{, y}-u_{\gamma}\right)$ is approximated by
- we estimate $F\left(u, u_{Y}\right)$ and $\bar{F}\left(u, u_{Y}\right)$ by

Main steps of the construction

Distribution of excesses above u and u_{Y} :
$F_{u, u_{Y}}(x, y):=\mathbb{P}\left(X-u \leq x, Y-u_{Y} \leq y \mid X>u, Y>u_{Y}\right)$.
Define $\bar{F}(x, y)=\mathbb{P}(X>x, Y>y)$.
Then $\forall x>u, y>u_{Y}$,
$F(x, y)=\bar{F}\left(u, u_{Y}\right) F_{u_{,} u_{Y}}\left(x-u, y-u_{Y}\right)+F(u, y)+F\left(x, u_{Y}\right)-F\left(u, u_{Y}\right)$.

Main steps :

- using 2D Pickands-Balkema-de Haan Theorem, $F_{u, u_{Y}}\left(x-u, y-u_{Y}\right)$ is approximated by
- we estimate $F\left(u, u_{Y}\right)$ and $\bar{F}\left(u, u_{Y}\right)$ by

Main steps of the construction

Distribution of excesses above u and u_{Y} :
$F_{u, u_{Y}}(x, y):=\mathbb{P}\left(X-u \leq x, Y-u_{Y} \leq y \mid X>u, Y>u_{Y}\right)$.
Define $\bar{F}(x, y)=\mathbb{P}(X>x, Y>y)$.
Then $\forall x>u, y>u_{Y}$,
$F(x, y)=\bar{F}\left(u, u_{Y}\right) F_{u, u_{Y}}\left(x-u, y-u_{Y}\right)+F(u, y)+F\left(x, u_{Y}\right)-F\left(u, u_{Y}\right)$.

Main steps :

- using 2D Pickands-Balkema-de Haan Theorem, $F_{u, u_{Y}}\left(x-u, y-u_{Y}\right)$ is approximated by

$$
C^{* G}\left(1-g\left(1-V_{k_{X}, \sigma_{X}(u)}(x-u)\right), 1-g\left(1-V_{k_{Y}, \sigma_{Y}\left(u_{Y}\right)}\left(y-u_{Y}\right)\right)\right) .
$$

- we estimate $F\left(u, u_{Y}\right)$ and $\bar{F}\left(u, u_{Y}\right)$ by

Main steps of the construction

Distribution of excesses above u and u_{Y} :

$$
F_{u, u_{Y}}(x, y):=\mathbb{P}\left(X-u \leq x, Y-u_{Y} \leq y \mid X>u, Y>u_{Y}\right) .
$$

Define $\bar{F}(x, y)=\mathbb{P}(X>x, Y>y)$.
Then $\forall x>u, y>u_{Y}$,
$F(x, y)=\bar{F}\left(u, u_{Y}\right) F_{u, u_{Y}}\left(x-u, y-u_{Y}\right)+F(u, y)+F\left(x, u_{Y}\right)-F\left(u, u_{Y}\right)$.

Main steps :

- using 2D Pickands-Balkema-de Haan Theorem, $F_{u, u_{Y}}\left(x-u, y-u_{Y}\right)$ is approximated by

$$
C^{* G}\left(1-g\left(1-V_{k_{\boldsymbol{X}}, \sigma_{\boldsymbol{X}}(u)}(x-u)\right), 1-g\left(1-V_{k_{\boldsymbol{Y}}, \sigma_{\boldsymbol{Y}}\left(u_{\boldsymbol{Y}}\right)}\left(y-u_{Y}\right)\right)\right)
$$

- we estimate $F\left(u, u_{Y}\right)$ and $\bar{F}\left(u, u_{Y}\right)$ by

$$
\widehat{F}\left(u, u_{Y}\right)=\frac{1}{n} \sum_{i=1}^{n} 1_{\left\{X_{i} \leq u, Y_{i} \leq u_{Y}\right\}}, \quad \widehat{\bar{F}}\left(u, u_{Y}\right)=\frac{1}{n} \sum_{i=1}^{n} 1_{\left\{X_{i}>u, Y_{i}>u_{Y}\right\}}
$$

Main steps of the construction

- we estimate $F(u, y)$ and $F\left(x, u_{Y}\right)$ by

$$
\begin{aligned}
& \star \widehat{F}_{1}^{*}(u, y)=\exp \left\{-\widehat{I}_{n}\left(-\log \left(\widehat{F_{X}}(u)\right),-\log \left({\widehat{F_{Y}}}^{*}(y)\right)\right)\right. \\
& \star \widehat{F}_{2}^{*}\left(x, u_{Y}\right)=\exp \left\{-\widehat{I}_{n}\left(-\log \left({\widehat{F_{X}}}^{*}(x)\right),-\log \left(\widehat{F_{Y}}\left(u_{Y}\right)\right)\right)\right.
\end{aligned}
$$

with

- $\widehat{F}_{X}(u)$ (resp. $\left.\widehat{F}_{Y}\left(u_{Y}\right)\right)$ the empirical estimates of $F_{X}(u)$ (resp.
- $\widehat{F}_{X}^{*}(x)\left(\right.$ resp. $\left.\widehat{F}_{Y}^{*}(y)\right)$ the 1D POT estimates of $F_{X}(u)$ (resp. - we estimate u_{Y} by $\widehat{u}_{Y}:=\widehat{F}_{Y}^{-1}\left(\widehat{F}_{X}(u)\right)$.

Main steps of the construction

- we estimate $F(u, y)$ and $F\left(x, u_{Y}\right)$ by

$$
\begin{aligned}
& \star \widehat{F}_{1}^{*}(u, y)=\exp \left\{-\widehat{I}_{n}\left(-\log \left(\widehat{F_{X}}(u)\right),-\log \left({\widehat{F_{Y}}}^{*}(y)\right)\right)\right. \\
& \star \widehat{F}_{2}^{*}\left(x, u_{Y}\right)=\exp \left\{-\widehat{I}_{n}\left(-\log \left({\widehat{F_{X}}}^{*}(x)\right),-\log \left(\widehat{F_{Y}}\left(u_{Y}\right)\right)\right)\right.
\end{aligned}
$$

with

- $\widehat{F}_{X}(u)$ (resp. $\left.\widehat{F}_{Y}\left(u_{Y}\right)\right)$ the empirical estimates of $F_{X}(u)$ (resp. $F_{Y}\left(u_{Y}\right)$),
- $\widehat{F}_{X}^{*}(x)\left(\right.$ resp. $\left.\widehat{F}_{Y}^{*}(y)\right)$ the 1D POT estimates of $F_{X}(u)$ (resp. - we estimate u_{Y} by $\widehat{u}_{Y}:=\widehat{F}_{Y}^{-1}\left(\widehat{F}_{X}(u)\right)$.

Main steps of the construction

- we estimate $F(u, y)$ and $F\left(x, u_{Y}\right)$ by

$$
\begin{aligned}
& \star \widehat{F}_{1}^{*}(u, y)=\exp \left\{-\widehat{I}_{n}\left(-\log \left(\widehat{F_{X}}(u)\right),-\log \left({\widehat{F_{Y}}}^{*}(y)\right)\right)\right. \\
& \star \widehat{F}_{2}^{*}\left(x, u_{Y}\right)=\exp \left\{-\widehat{I}_{n}\left(-\log \left({\widehat{F_{X}}}^{*}(x)\right),-\log \left(\widehat{F_{Y}}\left(u_{Y}\right)\right)\right)\right.
\end{aligned}
$$

with

- $\widehat{F}_{X}(u)$ (resp. $\left.\widehat{F}_{Y}\left(u_{Y}\right)\right)$ the empirical estimates of $F_{X}(u)$ (resp. $F_{Y}\left(u_{Y}\right)$),
- $\widehat{F}_{X}^{*}(x)$ (resp. $\left.\widehat{F}_{Y}^{*}(y)\right)$ the 1D POT estimates of $F_{X}(u)$ (resp. $F_{Y}\left(u_{Y}\right)$).

Main steps of the construction

- we estimate $F(u, y)$ and $F\left(x, u_{Y}\right)$ by

$$
\begin{aligned}
& \star \widehat{F}_{1}^{*}(u, y)=\exp \left\{-\widehat{I}_{n}\left(-\log \left(\widehat{F_{X}}(u)\right),-\log \left({\widehat{F_{Y}}}^{*}(y)\right)\right)\right. \\
& \star \widehat{F}_{2}^{*}\left(x, u_{Y}\right)=\exp \left\{-\widehat{I}_{n}\left(-\log \left({\widehat{F_{X}}}^{*}(x)\right),-\log \left(\widehat{F_{Y}}\left(u_{Y}\right)\right)\right)\right.
\end{aligned}
$$

with

- $\widehat{F}_{X}(u)$ (resp. $\left.\widehat{F}_{Y}\left(u_{Y}\right)\right)$ the empirical estimates of $F_{X}(u)$ (resp. $F_{Y}\left(u_{Y}\right)$),
- $\widehat{F}_{X}^{*}(x)$ (resp. $\left.\widehat{F}_{Y}^{*}(y)\right)$ the 1D POT estimates of $F_{X}(u)$ (resp. $F_{Y}\left(u_{Y}\right)$).
- we estimate u_{Y} by $\widehat{u}_{Y}:=\widehat{F}_{Y}^{-1}\left(\widehat{F}_{X}(u)\right)$.

Assumptions on the marginals

The assumptions below are assumed both for F_{X} and F_{Y}.
First order assumptions F is in the maximum domain of attraction of Fréchet, that is $\exists \alpha>0$ such that $\bar{F}(x)=x^{-\alpha} L(x)$ with L a slowly varying function.

Assumptions on the marginals

The assumptions below are assumed both for F_{X} and F_{Y}.
First order assumptions F is in the maximum domain of attraction of Fréchet, that is $\exists \alpha>0$ such that $\bar{F}(x)=x^{-\alpha} L(x)$ with L a slowly varying function.

Second order assumptions as in Smith (1987), we assume that L satisfies

$$
\text { SR2 } \frac{L(t x)}{L(x)}=1+k(t) \phi(x)+o(\phi(x)), \forall t>0, \text { as } x \rightarrow \infty
$$

with ϕ positive and $\phi(x) \xrightarrow[x \rightarrow+\infty]{ } 0$.
Remark: Let R_{ρ} be the set of ρ-regularly varying functions. Then, excluding trivial cases $\phi \in R_{\rho}$, for some $\rho \leq 0$, and $k(t)=c h_{\rho}(t)$, with $h_{\rho}(t)=\int_{1}^{t} u^{\rho-1} \mathrm{~d} u$.

Univariate convergence results

Theorem (MLE Convergence Theorem, (Smith, 1987))

Assume L satisfies $S R 2$. Let $Z_{1}, \ldots, Z_{m_{n}}$ i.i.d from an unknown distribution function $F_{u_{m_{n}}}$ where $\lim _{n \rightarrow \infty} m_{n}=\infty, \lim _{n \rightarrow \infty} \frac{m_{n}}{n}=0$. For each m_{n} we define a threshold $u_{m_{n}}:=\bar{f}\left(m_{n}\right) \xrightarrow[n \rightarrow \infty]{ } \infty$ such that

$$
\frac{\sqrt{m_{n}} c \phi\left(\bar{f}\left(m_{n}\right)\right)}{\alpha-\rho} \underset{n \rightarrow \infty}{\longrightarrow} \mu \in(-\infty, \infty)
$$

We define $k=-\alpha^{-1}$ and $\sigma_{m_{n}}=\bar{f}\left(m_{n}\right) \alpha^{-1}$. Then there exists a local maximum $\left(\widehat{\sigma}_{m_{n}}, \widehat{k}_{m_{n}}\right)$ of the GPD log likelihood function, such that

$$
\sqrt{m_{n}}\binom{\frac{\hat{\sigma}_{m_{n}}}{\sigma_{\sigma_{n}}}-1}{\widehat{k}_{m_{n}}-k} \xrightarrow[n \rightarrow \infty]{d} \mathscr{N}\left(\binom{\frac{\mu(1-k)(1+2 k \rho)}{1-k+k \rho}}{\frac{\mu(1-k) k(1+\rho)}{1-k+k \rho}} ; M^{-1}\right) .
$$

Univariate convergence results

The previous result is written conditionally on $N=m_{n}$. In practice the threshold u is fixed and N is considered as random. We give below a version of the MLE Convergence Theorem, unconditionally on N.

```
Corollary (Di Bernardino, Maume-Deschamps & P., 2010)
Assume L satisfies SR2. Let n be the sample size and }\mp@subsup{u}{n}{}:=\overline{f}(n)\mathrm{ the
threshold, such that }\overline{f}(n)\longrightarrow\infty\mathrm{ . Let N}=\mp@subsup{N}{n}{}\mathrm{ denote the random
```

number of excesses above u_{n}. If

$$
n\left(1-F_{X}\left(u_{n}\right)\right) \underset{n \rightarrow \infty}{ } \infty
$$

$$
\sqrt{n\left(1-F_{X}\left(u_{n}\right)\right)} c \phi\left(u_{n}\right) \underset{n \rightarrow \infty}{\longrightarrow} \mu(\alpha-\rho)
$$

Univariate convergence results

The previous result is written conditionally on $N=m_{n}$. In practice the threshold u is fixed and N is considered as random. We give below a version of the MLE Convergence Theorem, unconditionally on N.

Corollary (Di Bernardino, Maume-Deschamps \& P., 2010)

Assume L satisfies SR2. Let n be the sample size and $u_{n}:=\bar{f}(n)$ the threshold, such that $\bar{f}(n) \underset{n \rightarrow \infty}{ } \infty$. Let $N=N_{n}$ denote the random number of excesses above u_{n}. If

$$
\begin{gather*}
n\left(1-F_{X}\left(u_{n}\right)\right) \underset{n \rightarrow \infty}{ } \infty, \tag{5}\\
\sqrt{n\left(1-F_{X}\left(u_{n}\right)\right)} c \phi\left(u_{n}\right) \underset{n \rightarrow \infty}{\longrightarrow} \mu(\alpha-\rho), \tag{6}
\end{gather*}
$$

then the MLE Convergence Theorem holds also unconditionally on N.

A univariate central limit theorem

Below follows a clt for the absolute error :

Theorem (Di Bernardino, Maume-Deschamps \& P.)

Suppose L satisfies SR2. Let n be the sample size, $u_{n}:=\bar{f}(n) \underset{n \rightarrow \infty}{ } \infty$ and $z_{n}:=f(n) \xrightarrow[n \rightarrow \infty]{ } \infty$ such that $\forall s \in[0,1] \quad z_{n}^{-s \rho} \frac{\phi\left(u_{n} z_{n}^{s}\right)}{\phi\left(u_{n}\right)} \xrightarrow[n \rightarrow \infty]{\longrightarrow} 1$.
Let $N=N_{n}$ denote the random number of excesses above u_{n}. Assume moreover (5), (6) and

$$
\begin{array}{r}
\frac{\log \left(z_{n}\right)}{\sqrt{n\left(1-F\left(u_{n}\right)\right)}} \xrightarrow[n \rightarrow \infty]{ } 0, \\
z_{n}^{\alpha}\left(n\left(1-F\left(u_{n}\right)\right)\right)^{-1 / 2} \xrightarrow[n \rightarrow \infty]{ } 0 . \tag{7}
\end{array}
$$

$\underset{\log (f(n)) \widehat{\bar{F}}_{n}(\bar{f}(n) f(n))}{\text { Then }} \sqrt{N}\left[F(\bar{f}(n) f(n))-\widehat{F}^{*}(\bar{f}(n) f(n)] \xrightarrow[n \rightarrow \infty]{d} \mathscr{N}\left(\nu, \tau^{2}\right)\right.$.

Convergence results in bivariate framework

Let n be the sample size.
We choose thresholds $u_{1 n}=\bar{f}_{1}(n)\left(\right.$ resp. $\left.u_{2 n}=\bar{f}_{2}(n)\right)$ for X (resp. Y) and sequences $z_{1 n}=f_{1}(n)$ (resp. $\left.z_{2 n}=f_{2}(n)\right)$ satisfying assumptions of the univariate clt.
We have

$$
r_{n}\left|F\left(\bar{f}_{1}(n) f_{1}(n), \bar{f}_{2}(n) f_{2}(n)\right)-\widehat{F}^{*}\left(\bar{f}_{1}(n) f_{1}(n), \bar{f}_{2}(n) f_{2}(n)\right)\right| \underset{n \rightarrow \infty}{\mathbb{P}} 0
$$

Remark : we can replace $\bar{f}_{2}(n)$ by $\hat{\bar{f}}_{2}(n)$.
If C is twice continuously differentiable, in case of asymptotic dependence, we can take $\forall \varepsilon>0$
$r_{n}=\min \left\{n^{1 / 3-\varepsilon}, \frac{\sqrt{N_{X}}}{\log \left(f_{1}(n)\right) \overline{\widehat{F}}_{\boldsymbol{X}}\left(f_{1}(n) \bar{f}_{1}(n)\right)}, \frac{\sqrt{N_{Y}}}{\log \left(f_{2}(n)\right) \overline{\widehat{F}}_{\boldsymbol{X}}\left(f_{2}(n) \bar{f}_{2}(n)\right)}\right\}$.

Contents

(1) One-dimensional results

- The univariate POT method
(2) In dimension 2
- The framework
- 2D Pickands-Balkema-de Haan Theorem
(3) Estimating the tail of bivariate distributions
- Construction of the bivariate estimator
- Convergence results

4 Comparison with Ledford \& Tawn's model
(5) Simulation Study

Ledford \& Tawn's second order model

Model :

Let $\left(Z_{1}, Z_{2}\right)$ a bivariate random vector with Fréchet margins.
$\mathbb{P}\left(Z_{1}>z_{1}, Z_{2}>z_{2}\right)=z_{1}^{-c_{1}} z_{2}^{-c_{2}} \mathcal{L}\left(z_{1}, z_{2}\right)$ with $c_{1}, c_{2}>0$ and

$$
\mathcal{L}\left(z_{1}, z_{2}\right) \sim g_{1}\left(z_{1}, z_{2}\right)\left(1+g_{2}\left(z_{1}, z_{2}\right) z_{1}^{\rho_{1}} z_{2}^{\rho_{2}}\right) \text { as } z_{1}, z_{2} \rightarrow \infty,
$$

with g_{1} and g_{2} homogeneous functions of order 0 .

Notation :

- $\eta=\left(c_{1}+c_{2}\right)^{-1}$,
- $\rho_{1}+\rho_{2}=\tau$, usually $\tau<0$.

Ledford \& Tawn's second order model

Asymptotic dependence if $\eta=1$ and $\mathcal{L}(t) \nrightarrow 0$.
Asymptotic independence if $\eta<1$ or if $\eta=1$ and $\mathcal{L}(t) \rightarrow 0$. Case exact independence $\eta=1 / 2$ (in that case we have $\theta=1 / \eta=2$). Case positive association $1 / 2<\eta<1$ or $\eta=1$ and $\mathcal{L}(t) \rightarrow 0$. Case negative association $0<\eta<1 / 2$.

- "Ledfor \& Tawn does not work for extreme sets that are not simultaneously extreme in all components."
- Note that there exist counter-examples to Ledford \& Tawn models (Schlather, 2001)
- They always work with Frechet margins, by proceding with the following transformations
$\widehat{Z}_{1, i}=-1 / \log \hat{F}_{X}\left(X_{i}\right), \widehat{Z}_{2, i}=-1 / \log \hat{F}_{Y}\left(Y_{i}\right)$.
What happens then with the rate when coming back to the initial distributions?

Ledford \& Tawn's second order model

Asymptotic dependence if $\eta=1$ and $\mathcal{L}(t) \nrightarrow 0$.
Asymptotic independence if $\eta<1$ or if $\eta=1$ and $\mathcal{L}(t) \rightarrow 0$.
Case exact independence $\eta=1 / 2$ (in that case we have $\theta=1 / \eta=2$).
Case positive association $1 / 2<\eta<1$ or $\eta=1$ and $\mathcal{L}(t) \rightarrow 0$.
Case negative association $0<\eta<1 / 2$.

- "Ledfor \& Tawn does not work for extreme sets that are not simultaneously extreme in all components."
- Note that there exist counter-examples to Ledford \& Tawn models (Schlather, 2001).
- They always work with Fréchet margins, by proceding with the following transformations

What happens then with the rate when coming back to the initial distributions?

Ledford \& Tawn's second order model

Asymptotic dependence if $\eta=1$ and $\mathcal{L}(t) \nrightarrow 0$.
Asymptotic independence if $\eta<1$ or if $\eta=1$ and $\mathcal{L}(t) \rightarrow 0$.
Case exact independence $\eta=1 / 2$ (in that case we have $\theta=1 / \eta=2$).
Case positive association $1 / 2<\eta<1$ or $\eta=1$ and $\mathcal{L}(t) \rightarrow 0$.
Case negative association $0<\eta<1 / 2$.

- "Ledfor \& Tawn does not work for extreme sets that are not simultaneously extreme in all components."
- Note that there exist counter-examples to Ledford \& Tawn models (Schlather, 2001)
- They always work with Fréchet margins, by proceding with the following transformations

What happens then with the rate when coming back to the initial distributions?

Ledford \& Tawn's second order model

Asymptotic dependence if $\eta=1$ and $\mathcal{L}(t) \nrightarrow 0$.
Asymptotic independence if $\eta<1$ or if $\eta=1$ and $\mathcal{L}(t) \rightarrow 0$.
Case exact independence $\eta=1 / 2$ (in that case we have $\theta=1 / \eta=2$).
Case positive association $1 / 2<\eta<1$ or $\eta=1$ and $\mathcal{L}(t) \rightarrow 0$.
Case negative association $0<\eta<1 / 2$.

- "Ledfor \& Tawn does not work for extreme sets that are not simultaneously extreme in all components."
- Note that there exist counter-examples to Ledford \& Tawn models (Schlather, 2001).
- They always work with Fréchet margins, by proceding with the following transformations :
$\widehat{Z}_{1, i}=-1 / \log \hat{F}_{X}\left(X_{i}\right), \widehat{Z}_{2, i}=-1 / \log \hat{F}_{Y}\left(Y_{i}\right)$.
What happens then with the rate when coming back to the initial distributions?

Contents

(1) One-dimensional results

- The univariate POT method
(2) In dimension 2
- The framework
- 2D Pickands-Balkema-de Haan Theorem
(3) Estimating the tail of bivariate distributions
- Construction of the bivariate estimator
- Convergence results
(4) Comparison with Ledford \& Tawn's model
(5) Simulation Study

Model Survival Clayton-Fréchet, asymptotic dependence

$$
\begin{gathered}
C(u, v)=u+v-1+\left[(1-u)^{-1}+(1-v)^{-1}-1\right]^{-1} \text { (Survival Clayton copula) } \\
F_{X}(x)=F_{Y}(x)=\exp (-1 / x)(\text { same margins, Fréchet distribution })
\end{gathered}
$$

Figure: Copula Survival Clayton.

Figure: Bivariate distribution function $F_{X, Y}(x, y)$, with $F_{X}=F_{Y}$, for $x>0, y>0$.

We introduce

$$
\begin{gather*}
\widehat{\mathscr{F}}_{1}^{*}(x, y)=\exp \left\{-\widehat{I}_{n}\left(-\log \left({\widehat{F_{X}}}^{*}(x)\right),-\log \left(\widehat{F}_{Y}^{*}(y)\right)\right)\right\}, \tag{8}\\
\widehat{\mathscr{F}}_{2}^{*}(x, y)=1-\widehat{I}_{n}\left(1-{\widehat{F_{X}}}^{*}(x), 1-{\widehat{F_{Y}}}^{*}(y)\right), \tag{9}
\end{gather*}
$$

with ${\widehat{F_{X}}}^{*}(x)$ (resp. ${\widehat{F_{Y}}}^{*}(y))$ 1D POT tail estimator for X (resp. Y).

Table: $t=100$ simulations of size $n=1000, u_{1 n}=u_{2 n}=n^{1 / 3} / 3=3.33333$, $z_{1 n}=z_{2 n}=\log n^{1 / 3}=2.302585$

We introduce

$$
\begin{gather*}
\widehat{\mathscr{F}}_{1}^{*}(x, y)=\exp \left\{-\widehat{I}_{n}\left(-\log \left({\widehat{F_{X}}}^{*}(x)\right),-\log \left({\widehat{F_{Y}}}^{*}(y)\right)\right)\right\}, \tag{8}\\
\widehat{\mathscr{F}}_{2}^{*}(x, y)=1-\widehat{I}_{n}\left(1-{\widehat{F_{X}}}^{*}(x), 1-{\widehat{F_{Y}}}^{*}(y)\right), \tag{9}
\end{gather*}
$$

with ${\widehat{F_{X}}}^{*}(x)$ (resp. ${\widehat{F_{Y}}}^{*}(y))$ 1D POT tail estimator for X (resp. Y).

method	$\overline{E R R_{\text {abs }}}$	$\overline{E R R_{\text {rel }}}$
classical 1	0.009907416	0.01207137
classical 2	0.01203755	0.01466676
L \& T	0.02218138	0.02702618
Y \& W	0.01566613	0.01908789

Table: $t=100$ simulations of size $n=1000, u_{1 n}=u_{2 n}=n^{1 / 3} / 3=3.33333$, $z_{1 n}=z_{2 n}=\log n^{1 / 3}=2.302585$

Model Survival Clayton-Fréchet, asymptotic dependence

method	$F\left(f_{1}(n) \bar{f}_{1}(n), f_{2}(n) \bar{f}_{2}(n)\right)$	empirical variance
theoretic	0.8207367	
classical 1	0.8216137	0.0001566896
classical 2	0.8160857	0.0002055914
L \& T	0.8143	0.000713136
Y \& W	0.8310827	0.0002599203

Table: $t=100$ simulations of size $n=1000$

Model Survival Clayton-Burr, asymptotic dependence

$$
\begin{aligned}
& C(u, v)=u+v-1+\left[(1-u)^{-1}+(1-v)^{-1}-1\right]^{-1}(\text { Survival Clayton copula }), \\
& F_{X}(x)=1-(1+x)^{-1}, F_{Y}(y)=1-(1+y)^{-2}(\operatorname{Burr}(1), \operatorname{Burr}(2)) .
\end{aligned}
$$

Figure: Copula Survival Clayton.

Figure: Bivariate distribution function $F_{X, Y}(x, y)$, with $F_{X}=F_{Y}$, for $x>0, y>0$.

Model Survival Clayton-Burr, asymptotic dependence

method	$\overline{E R R_{\text {abs }}}$	$\overline{E R R_{\text {rel }}}$
classical 1	0.01308886	0.01578057
classical 2	0.01285705	0.000192
L \& T	0.01558348	0.01878820
Y \& W	0.01685493	0.02128565

Table: $t=100$ simulations of size $n=1000, u_{1 n}=n^{1 / 3} / 3=3.33333$, $z_{1 n}=\log n^{1 / 3}=2.302585, u_{2 n}=\sqrt{3.33333}, z_{2 n}=\sqrt{2.302585}$

method	$F\left(f_{1}(n) \bar{f}_{1}(n), f_{2}(n) \bar{f}_{2}(n)\right)$	empirical variance
theoretic	0.8294288	
classical 1	0.8375733	0.0001816101
classical 2	0.836	0.000192
L \& T	0.8210546	0.0005832912
Y \& W	0.8313332	0.0006985493

Table: $t=100$ simulations of size $n=1000$

Model Independent-Burr, asymptotic independence

$$
\begin{gathered}
C(u, v)=u v(\text { Independent copula }), \\
F_{X}(x)=1-(1+x)^{-1}, F_{Y}(y)=1-(1+y)^{-2}(\operatorname{Burr}(1), \operatorname{Burr}(2)) .
\end{gathered}
$$

Figure: Copula Independent.

Figure: Bivariate distribution function $F_{X, Y}(x, y)$, with $F_{X}=F_{Y,}$, for $x>0, y>0$.

Model Independent-Burr, asymptotic independence

method	$\overline{E R R_{\text {abs }}}$	$\overline{E R R_{\text {rel }}}$
classical 1	0.01039948	0.01297756
classical 2	0.02041998	0.01987981
L \& T	0.00343821	0.004290557
Y \& W	0.003974741	0.004960096

Table: $t=100$ simulations of size $n=1000$

method	$F\left(f_{1}(n) \bar{f}_{1}(n), f_{2}(n) \bar{f}_{2}(n)\right)$
theoretic	0.8013436
classical 1	0.811743
classical 2	0.820857
$\mathrm{~L} \& \mathrm{~T}$	0.7979054
$\mathrm{Y} \& \mathrm{~W}$	0.8053183

Table: $t=100$ simulations of size $n=1000, u_{1 n}=n^{1 / 3} / 3=3.33333$,
$z_{1 n}=\log n^{1 / 3}=2.302585, u_{2 n}=\sqrt{3.33333}, z_{2 n}=\sqrt{2.302585}$

Loss-ALAE

Data examined by Frees and Valdez (1998) with X Pareto (1.122), Y Pareto (2.118), Copula Gumbel with parameter 1.4.
We then get $g(x)=\frac{1+x-\left(1+x^{1.4}\right)^{1 / 1.4}}{2-2^{1 / 1.4}}$.
We choose

$$
\begin{aligned}
& \text { - } u_{1 n}=10000 \times n^{1 / 3}=114471.4, z_{1 n}=1.7471 \Rightarrow \\
& u_{1 n} \times z_{1 n}=200000 . \\
& \text { - } u_{2 n}=\widehat{F}_{Y}\left(F_{X}\left(u_{1 n}\right)\right), z_{2 n}=3 \Rightarrow u_{2 n} \times z_{2 n}=100000 .
\end{aligned}
$$

We get the estimate

$$
\mathbb{P}(\text { Loss } \leq 200000, \text { ALAE } \leq 100000)=0.9513696
$$

Hence $\mathbb{P}($ Loss >200000, ALAE $>100000)=0.0067029$.
We compare with the empirical probability 0.006 (see Beirlant, Dierckx \& Guillou, 2010).

Simulation Study

Loss-ALAE

Figure: Loss-ALAE.

Loss-ALAE

Example : for $k_{n}=840$ we get $\mathbb{P}($ Loss ≤ 200000, ALAE $\leq 100000)=0.9506583$, that is an absolute error equal to 8.436013×10^{-6} and a relative error equal to 8.835904×10^{-6}.

Figure: Sensibility with respect to $10 \leq k_{n} \leq 1500$.

Loss-ALAE

Figure: Zoom for $10 \leq k_{n} \leq 50$.

Figure: Zoom for $500 \leq k_{n} \leq 1150$.

Summary

* a new and different approach for estimating bivariate tails,
* we need neither Ledford \& Tawn assumptions nor unit Fréchet margins,
* as for L \& T estimate, it is particularly interesting when dealing with asymptotic independence.

Ideas for future developments

* get the optimal rate, a central limit theorem?
* use the bivariate tail estimator $\widehat{F}^{*}(x, y)$ to obtain estimation of bivariate upper-quantile curves, for high levels α.
\star application to the estimation of bivariate Value-at-Risk for large α :

$$
\operatorname{Va} R_{\alpha}(\widehat{F}):=\left\{(x, y) \in\left(\bar{f}_{1}(n),+\infty\right) \times\left(\widehat{\bar{f}}_{2}(n),+\infty\right): \widehat{F}^{*}(x, y)=\alpha\right\} .
$$

Thank for your attention!

