Asymptotic Distribution of Two-Sample Empirical U-Quantiles for Dependent Data

Herold Dehling

(joint work with Roland Fried (TU Dortmund) and Martin Wendler)

RUHR-UNIVERSITÄT BOCHUM

Limit Theorems for Dependent Data and Applications Conference in honor of Professor Magda PELIGRAD

ONE SAMPLE CASE: X_1, \ldots, X_n ; define the Hodges-Lehmann estimator for the location

$$
\text{median}\{\frac{1}{2}(X_i+X_j):1\leq i
$$

 $\textsf{Two}\ \textsf{sample}\ \textsf{case}\colon X_1,\ldots X_{n_1},\ Y_1,\ldots, Y_{n_2};$ define the Hodges-Lehmann estimator for the difference in location

 $median\{(X_i - Y_i): 1 \le i \le n_1, 1 \le j \le n_2\}.$

We are interested in the asymptotic distribution of such estimators in the case of dependent data.

 Ω

 $A \cap \overline{B} \rightarrow A \Rightarrow A \Rightarrow A \Rightarrow B$

Definition (Halmos 1946, Hoeffding 1948, von Mises 1947)

Given a process $(X_i)_{i>1}$ of iid random variables with marginal distribution F and a symmetric kernel $h:\mathbb{R}^2\to\mathbb{R},$ we define the bivariate *U*- and *V*-statistics statistics with kernel *h* by

$$
U_n(h) := \frac{1}{\binom{n}{2}} \sum_{1 \leq i < j \leq n} h(X_i, X_j),
$$
\n
$$
V_n(h) := \frac{1}{n^2} \sum_{1 \leq i, j \leq n} h(X_i, X_j).
$$

- \blacktriangleright *U* and *V*-statistics are generalized means of $h(X_i, X_j)$, $1 \leq i \leq j \leq n$ (resp. $1 \leq i, j \leq n$)
- ► Analogously one c[an](#page-1-0) define *m*-variate U- an[d](#page-3-0) [V](#page-1-0)[-s](#page-2-0)[ta](#page-3-0)[tis](#page-0-0)[ti](#page-29-0)[cs](#page-0-0) 医单侧 医骨间的

Examples

► $h(x, y) = \frac{1}{2}(x - y)^2$ leads to the sample variance

$$
U_n(h) = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2
$$

►
$$
h(x, y) = \int (1_{(-\infty, s]}(x) - F_0(s))(1_{(-\infty, s]}(y) - F_0(s))w(s)dF_0(s);
$$

$$
V_n(h) = \int (F_n(s) - F_0(s))^2w(s)dF_0(s);
$$

Cramer-von Mises test statistic for testing the hypothesis $H: F = F_0.$

 \triangleright *h*(*x*, *y*) = log($||x - y||$) leads to the Takens' estimator of the correlation dimension of the distribution *F*. (Floris Takens (12.11.1940–20.06.2010)) 4 0 8 4 4 9 8 4 9 8 4 9 8

Hoeffding Decomposition I

The tool for the analysis of *U*-statistics:

$$
\theta := Eh(X_1, X_2)
$$

\n
$$
h_1(x) := Eh(x, X) - \theta
$$

\n
$$
h_2(x, y) := h(x, y) - h_1(x) - h_1(y) - \theta.
$$

We obtain the decomposition of *h* and of the *U*-statistic

$$
h(x, y) = \theta + h_1(x) + h_1(y) + h_2(x, y)
$$

$$
U_n(h) = \theta + \frac{2}{n} \sum_{i=1}^n h_1(X_i) + U_n(h_2)
$$

The functions h_1 and h_2 satisfy $\int h_1(x)dF(x)=0$ and

$$
\int h_2(x,y)dF(x) = 0 \quad \text{(degeneracy)}
$$

The terms in the summands on the r.h.s. are uncorrelated (!) and thus

$$
\operatorname{Var}(\frac{2}{n}\sum_{i=1}^{n}h_1(X_i)) = \frac{4}{n}\operatorname{Var}(h_1(X_1))
$$

$$
\operatorname{Var}(U_n(h_2)) = \frac{1}{\binom{n}{2}}\operatorname{Var}(h_2(X_1, X_2)).
$$

- **Generally, the linear term** $\frac{2}{n}\sum_{i=1}^{n}h_1(X_i)$ **is dominating. Limit** theorems can be obtained by using classical limit theorems for partial sums and a control of the remainder term $U_n(h_2)$.
- ▶ Non-classical limit theory in the *degenerate case*, when $Var(h_1(X)) = 0.$

(1) Law of Large Numbers (Hoeffding 1961, Berk 1966)

 $U_n(h) \to \theta$ *a.s.*

(2) Central Limit Theorem (Hoeffding 1948)

√ $n(U_n(h) - \theta) \rightarrow N(0, 4 \text{Var}(h_1(X)))$ in distribution,

(3) Law of the Iterated Logarithm (Sen 1972)

$$
\limsup_{n\to\infty}\frac{\sqrt{n}}{\sqrt{2\log\log n}}(U_n(h)-\theta)=2\text{Var}(h_1(X))\quad a.s.
$$

The functional versions of these limit theorems also hold.

 Ω

イロト イ押 トイラト イラト

Degenerate U- Statistic Limit Theorems

Let $h \in L_2([0,1]^2)$ be degenerate and let $(X_i)_{i \geq 1}$ be independent *U*([0, 1])-distributed. Then

(1) Degenerate *U*-statistics CLT (Fillipova 1964)

$$
n(U_n(h)-\theta)\to \int \int h(x,y)dW_0(x)dW_0(y).
$$

where $(W_0(t))_{0 \le t \le 1}$ is standard Brownian bridge.

(2) Degenerate *U*-statistics LIL (D., Denker, Philipp 1984, D. 1989)

$$
\limsup_{n\to\infty}\frac{1}{n\log\log n}\sum_{1\leq i\n
$$
=\sup\left\{\int\int f(x)f(y)h(x,y)dxdy:\int f^2(x)dx=1\right\}\quad a.s.
$$
$$

 Ω

 $4\overline{m}$ \rightarrow $4\overline{m}$ \rightarrow $4\overline{m}$ \rightarrow

Definition (Absolutely regular process)

(i) Let (Ω, \mathcal{F}, P) be a probability space and let A and B be two sub- σ -fields of $\mathcal F$. We then define

$$
\beta(\mathcal{A},\mathcal{B}):=\sup \sum_{i=1}^m\sum_{j=1}^n|P(A_i\cap B_j)-P(A_i)P(B_j)|,
$$

supremum taken over all partitions of Ω into set $A_1, \ldots, A_m \in \mathcal{A}$, all partitions of Ω into sets B_1, \ldots, B_n ∈ *B* and all *m*, *n* ≥ 1. (ii) The process $(X_i)_{i\geq 1}$ is called absolutely regular, if for $k\to\infty$

$$
\beta(k) := \sup_n \beta(\mathcal{F}_1^n, \mathcal{F}_{n+k}^{\infty}) \to 0,
$$

where \mathcal{F}^l_k is the σ -field generated by $X_k, \ldots, X_l.$

D.

 QQ

イロトメ部 トメミトメミト

More generally, we consider functionals of absolutely regular processes, i.e. we assume that $(X_i)_{i\geq 1}$ has a representation

$$
X_i = f((Z_{n+i})_{n \in \mathbb{Z}}),
$$

where $(Z_n)_{n \in \mathbb{Z}}$ is an absolutely regular process and $f: \mathbb{R}^\mathbb{Z} \to \mathbb{R}$ satisfies some continuity property.

Large classes of processes can be expressed in this way, e.g.

- \triangleright ARMA processes
- \blacktriangleright Many dynamical systems $X_n = \mathcal{T}^n(X_0),$ e.g. if $\mathcal{T}:[0,1] \to [0,1]$ is expanding (Hofbauer, Keller 1984).

For details and more examples, see Borovkova, Burton, D. (2001).

 Ω

K ロ > K @ > K 환 > K 환 > 시환

Theorem (Aaronson, Burton, D., Gilat, Hill, Weiss 1996)

If one of the following two conditions is satisfied,

(i) h is $F \times F$ almost everywhere continuous and bounded *(ii)* the process $(X_k)_{k>1}$ *is absolutely regular and h is bounded, the U-statistics ergodic theorem holds, i.e.*

$$
\frac{1}{\binom{n}{2}}\sum_{1\leq i
$$

Aaronson et al. (1996) gave counterexamples in case the above conditions are not satisfied: the *U*-statistic ergodic theorem may fail for ergodic processes (*Xi*)*i*≥1.

 Ω

イロト イ押 トイラト イラト

Dependent U-Statistics CLT

Theorem

Under some technical conditions on h(*x*, *y*) *and* (*Xi*)*i*≥1*,*

$$
\sqrt{n}(U_n(h)-\theta)\to N(0,4\sigma^2),
$$

where

$$
\sigma^2 := \text{Var}(h_1(X_1)) + 2 \sum_{i=2}^{\infty} \text{Cov}(h_1(X_1), h_1(X_i))
$$

- \blacktriangleright Absolutely regular processes: Yoshihara (1976)
- \triangleright Functionals of absolutely regular processes: Denker and Keller (1983, 1985), Borovkova, Burton, D. (2001)
- \triangleright Strongly mixing processes: D., Wendler (2010)

Results on degenerate kernels have been obtaines by Babbel (1989), Kanagawa, Yoshihara (1998), Leucht, Neuma[nn](#page-10-0) [\(2](#page-12-0)[0](#page-10-0)[10](#page-11-0)[\)](#page-12-0)[.](#page-0-0)

Empirical U-Process CLT

Given a symmetric kernel *f*(*x*, *y*), define the empirical *U*-distribution function

$$
U_n(t) = \frac{1}{\binom{n}{2}} \sum_{1 \le i < j \le n} 1_{\{f(X_i, X_j) \le t\}}
$$

and the empirical U -process $\sqrt{n}(U_{n}(t)-U(t))$, where $U(t) = P(f(X, Y) \le t)$...

Theorem (Serfling 1984, Arcones, Yu 1994, Borovkova, Burton, D. 2001)

Let (*Xi*)*i*≥¹ *be a functional of an absolutely regular process. Then under some technical conditions on* $f(x, y)$ *and* $(X_i)_{i \geq 1}$ *,*

$$
(\sqrt{n}(U_n(t)-U(t)))_{t\geq 0}\stackrel{\mathcal{D}}{\longrightarrow}(W(t))_{t\geq 0},
$$

where (*W*(*t*))*t*≥⁰ *is a mean-zero Gaussian process.*

 $\sqrt{2}a$

日本 不得 医不良 医不良的 一身

Example: The Hodges-Lehmann estimator of location

median
$$
\left\{\frac{X_i + X_j}{2} : 1 \le i < j \le n\right\}
$$

= inf $\left\{t : \frac{2}{n(n-1)} \sum_{1 \le i < j \le n} 1_{\left\{\frac{1}{2}(X_i + X_j) \le t\right\}} \ge \frac{1}{2}\right\}$

is the 50% quantile of the empirical distribution $U_n(\cdot)$ of the pairwise means $\frac{1}{2}(X_i + X_j),\, 1 \leq i < j \leq n.$ More general, we define the empirical (one sample) *U*-quantile

$$
U_n^{-1}(p):=\inf\left\{t: U_n(t)\geq p\right\}.
$$

Theorem (Wendler, 2010)

Let (*Xi*) *i*≥1 *be a functional of an absolutely regular process. Then under some technical conditions, we have for any* $0 < p_1 < p_2 < 1$

$$
\left(\sqrt{n}\left(U_n^{-1}(p)-U^{-1}(p)\right)\right)_{p\in (p_1,p_2)}\xrightarrow{\mathcal{D}}\left(\frac{1}{U'(U^{-1}(p))}\mathsf{W}(U^{-1}(p))\right)_{p\in (p_1,p_2)}
$$

The functional LIL also holds.

 Ω

 4 different 4 different \pm and \pm and \pm

Basic tool in the treatment of the empirical *U*-quantiles is the Bahadur-Kiefer representation, i.e.

$$
U_n^{-1}(p) - U^{-1}(p) = \frac{p - U_n(U^{-1}(p))}{U'(U^{-1}(p))} + R_n(p).
$$

Theorem (Wendler, 2010)

Under the same technical assumptions as in the previous theorem

$$
\sup_{\rho\in(\rho_1,\rho_2)}R_n(\rho)=o(n^{-\frac{23}{40}}) \quad a.s.
$$

4 0 8

The two sample Hodges-Lehmann estimator

 $median\{(X_i - Y_i) : 1 \leq i \leq n_1, 1 \leq j \leq n_2\}.$

is the 50% quantile of the empirical distribution $\mathit{U}_{n_{1},n_{2}}(\cdot)$ of the differences $X_i − Y_j$, 1 ≤ $i ≤ n_1,$ 1 ≤ $j ≤ n_2,$

$$
U_{n_1,n_2}(t)=\frac{1}{n_1\,n_2}\#\{1\leq i\leq n_1, 1\leq j\leq n_2\,:\,X_i-Y_j\leq t\}
$$

More generally, we define the two-sample empirical *U*-quantiles

$$
Q_{n_1,n_2}(p)=\inf\{t: U_{n_1,n_2}(t)\geq p\},\ 0\leq p\leq 1.
$$

 Ω

4 0 8 4 4 9 8 4 9 8 4 9 8

Two Sample U-Process, U-Quantile Process

The empirical *U*-distribution function and *U*-quantiles,

$$
U_{n_1,n_2}(t) = \frac{1}{n_1 n_2} \# \{ 1 \le i \le n_1, 1 \le j \le n_2 : X_i - Y_j \le t \}
$$

\n
$$
Q_{n_1,n_2}(p) = \inf \{ t : U_{n_1,n_2}(t) \ge p \},
$$

are the natural estimator of the distribution function and the quantiles of *X* − *Y*, where *X*,*Y* are independent,

> *H*(*t*) = $P(X - Y \le t)$ $Q(p) = \inf\{t : H(t) \ge p\}.$

We will investigate the asymptotic distributions of

$$
\sqrt{n_1+n_2}(U_{n_1,n_2}(t)-H(t))
$$

$$
\sqrt{n_1+n_2}(Q_{n_1,n_2}(p)-Q(p)).
$$

 Ω

 \mathcal{A} \mathcal{B} \rightarrow \mathcal{A} \mathcal{B} \rightarrow \mathcal{A} \mathcal{B} \rightarrow

Dependence in the Two Sample Problem

In the standard two sample problem,

*X*₁, . . . , *X*_{*n*1} ∼ *F Y*₁, . . . , *Y*_{*n*2} ∼ *G*

all observations are independent. We study two situations

- 1. Given are two stationary ergodic processes $(X_i)_{i\geq 1}$ and $(Y_i)_{i\geq 1}$, independent of each other.
- 2. Given is one stationary ergodic process $(X_i)_{i\geq 1}$ and

 $Y_j = X_{n_1+j}, \; 1 \leq j \leq n_2.$

The asymptotic distributions of our statistics are the same in both cases, at least for weakly dependent observations.

 QQ

4

Two Sample U-Statistics

The two sample empirical *U*-distribution function,

$$
U_{n_1,n_2}(t) = \frac{1}{n_1 n_2} \# \{ 1 \le i \le n_1, 1 \le j \le n_2 : X_i - Y_j \le t \}
$$

=
$$
\frac{1}{n_1 n_2} \sum_{i=1}^{n_1} \sum_{j=1}^{n_2} 1_{\{X_i - Y_j \le t\}},
$$

is a special case of a two sample *U*-statistic, defined as

$$
U_{n_1,n_2}=\frac{1}{n_1 n_2}\sum_{i=1}^{n_1}\sum_{j=1}^{n_2}h(X_i,Y_j).
$$

We will begin our investigations by studying the asymptotic distribution of U_{n_1,n_2} as $n_1,n_2\to\infty$.

 Ω

イロト イ押ト イミト イミト

As in the case of independent observations, the analysis of the asymptotic behavior of *U*-statistics uses the Hoeffding decomposition. We introduce the following quantities,

$$
\theta = Eh(X, Y)
$$

\n
$$
h_1(x) = Eh(x, Y) - \theta
$$

\n
$$
h_2(y) = Eh(X, y) - \theta
$$

\n
$$
g(x, y) = h(x, y) - h_1(x) - h_2(y) - \theta,
$$

and observe that

$$
h(x, y) = \theta + h_1(x) + h_2(y) + g(x, y).
$$

Hoeffding Decomposition II

The decomposition of the kernel *h*(*x*, *y*) leads to the Hoeffding decomposition of the *U*-statistic,

$$
U_{n_1,n_2}=\theta+\frac{1}{n_1}\sum_{i=1}^{n_1}h_1(X_i)+\frac{1}{n_2}\sum_{j=1}^{n_2}h_2(Y_j)+\frac{1}{n_1\,n_2}\sum_{i=1}^{n_1}\sum_{j=1}^{n_2}g(X_i,Y_j).
$$

The functions $h_1(x)$, $h_2(y)$ have the property

$$
Eh_1(X)=Eh_2(Y)=0,
$$

i.e. $\sum_{i=1}^{n_1} h_1(X_i)$ and $\sum_{i=1}^{n_2} h_2(Y_i)$ are sums of mean zero random variables. Moreover,

$$
Eg(X, y) = Eg(x, Y) = 0
$$
 (degenerate)

Theorem (D., Fried (2010))

Let $(X_i)_{i\geq 1}$ *and* $(Y_i)_{i\geq 1}$ *be functionals of absolutely regular processes* s atisfying $\sum_{k=1}^\infty k\,\beta(\overline{k}) < \infty$ and assume that $E|h(X,Y)|^{2+\epsilon} < \infty$, for *k*=1 $n \rho(n) < \infty$ and assume that $L[n(X, 1)] < \infty$, for some $\epsilon > 0$. Then, as $n_1, n_2 \to \infty$ so that $\frac{n_1}{n_1+n_2} \to \lambda \in (0, 1)$, we have

$$
\sqrt{n_1+n_2}(U_{n_1,n_2}-\theta)\rightarrow N(0,\sigma^2),
$$

where

$$
\sigma^{2} = \frac{1}{\lambda} \left(\text{Var}(h_{1}(X)) + 2 \sum_{i=2}^{\infty} \text{Cov}(h_{1}(X_{1}), h_{1}(X_{i})) \right) + \frac{1}{1-\lambda} \left(\text{Var}(h_{2}(Y)) + 2 \sum_{i=2}^{\infty} \text{Cov}(h_{2}(Y_{1}), h_{2}(Y_{i}) \right)
$$

4 0 8

 Ω

 \mathcal{A} \mathcal{B} \rightarrow \mathcal{A} \mathcal{B} \rightarrow \mathcal{A} \mathcal{B} \rightarrow

Two Sample U-Statistic CLT: Idea of Proof

Lemma (D., Fried 2010)

Let $(X_i)_{i\geq 1}$ *and* $(Y_i)_{i\geq 1}$ *be functionals of absolutely regular processes with mixing coefficients satisfying* $\sum_{k=1}^\infty k$ β(k) < ∞*. Then*

$$
E\left(\sum_{i=1}^{n_1}\sum_{j=1}^{n_2}g(X_i,Y_j)\right)^2\leq C\,n_1\,n_2\tag{1}
$$

where C is some constant, not depending on n₁ and n₂.

The proof uses generalized correlation inequalities, i.e. bounds on

 $E f(\xi_1, \xi_2) - E f(\xi_1', \xi_2')$

where ξ_1',ξ_2' are independent with the same marginal distributions as ξ_1, ξ_2 . $(0.123 \times 10^{-14} \text{ J}) \times 10^{-14} \text{ J} = 1.123 \times 10^{-14} \text{ J}$ Ω

Two Sample U-Process/U-Quantiles Revisited

Recall the definition of the empirical *U*-distribution function and *U*-quantiles:

$$
U_{n_1,n_2}(t) = \frac{1}{n_1 n_2} \# \{ 1 \le i \le n_1, 1 \le j \le n_2 : X_i - Y_j \le t \}
$$

=
$$
\frac{1}{n_1 n_2} \sum_{i=1}^{n_1} \sum_{j=1}^{n_2} 1_{\{X_i - Y_j \le t\}}
$$

$$
Q_{n_1,n_2}(p) = \inf \{ t : U_{n_1,n_2}(t) \ge p \},
$$

together with

$$
H(t) = P(X - Y \leq t)
$$

$$
Q(p) = \inf\{t : H(t) \geq p\}.
$$

 Ω

Er kirk 手下

4 ロト 4 何 ト 4

Two Sample Empirical U-Process CLT

Theorem (D., Fried 2010)

Let $(X_i)_{i\geq 1}$ *and* $(Y_i)_{i\geq 1}$ *be functionals of absolutely regular processes* s atisfying $\sum_{k=1}^{\infty} k\beta(\bar{k}) < \infty$. Let $n_1, n_2 \to \infty$ so that $\frac{n_1}{n_1+n_2} \to \lambda \in (0,1)$. *Then, for any t* $\in \mathbb{R}$ *,*

$$
\sqrt{n_1+n_2}(U_{n_1,n_2}(t)-H(t))\rightarrow N\left(0,\frac{\sigma_1^2(t)}{\lambda}+\frac{\sigma_2^2(t)}{1-\lambda}\right)
$$

in distribution, where

$$
\sigma_1^2(t) = \text{Var}(G(X_1 - t)) + 2 \sum_{k=2}^{\infty} \text{Cov}(G(X_1 - t), G(X_k - t))
$$

$$
\sigma_2^2(t) = \text{Var}(F(Y_1 + t)) + 2 \sum_{k=2}^{\infty} \text{Cov}(F(Y_1 + t), F(Y_k + t))
$$

Bahadur-Kiefer Representation

The asymptotic distribution of the empirical *U*-quantiles can be derived from that of the empirical *U*-process with the help of the Bahadur-Kiefer representation

$$
Q_{n_1,n_2}(\rho)=Q(\rho)+\frac{\rho-U_{n_1,n_2}(Q(\rho))}{H'(Q(\rho))}+R_{n_1,n_2},
$$

where R_{n_1,n_2} is a "small" remainder term.

Theorem (D., Fried 2010)

Let $(X_i)_{i\geq 1}$ *and* $(Y_i)_{i\geq 1}$ *be functionals of absolutely regular processes* with mixing coefficients $\beta(k)$ satisfying $\sum_{k=1}^{\infty} k\beta(k) < \infty$. Then for any 0 < *p* < 1 *we have*

$$
Q_{n_1,n_2}(p)=Q(p)+\frac{p-U_{n_1,n_2}(Q(p))}{H'(Q(p))}+R_{n_1,n_2}
$$

where $R_{n_1,n_2} = o_P(\frac{1}{\sqrt{n_1}})$ $\frac{1}{n_1+n_2}$).

Theorem (D., Fried 2010)

Let $(X_i)_{i\geq 1}$ *and* $(Y_i)_{i\geq 1}$ *be stationary, absolutely regular processes* $\textsf{satisfying } \sum_{k=1}^\infty k\beta(\bar{k}) < \infty.$ Let $n_1, n_2 \to \infty$ so that $\frac{n_1}{n_1+n_2} \to \lambda \in (0,1).$ *Then*

$$
\begin{aligned}\n &\sqrt{n_1+n_2}(Q_{n_1,n_2}(\rho)-Q(\rho)) \\
&\longrightarrow N\left(0,\frac{1}{\left(H'(Q(\rho))\right)^2}\left(\frac{\sigma_1^2(Q(\rho))}{\lambda}+\frac{\sigma_2^2(Q(\rho))}{1-\lambda}\right)\right),\n\end{aligned}
$$

where $\sigma_1^2(Q(p))$ and $\sigma_2^2(Q(p)))$ are defined as above.

 Ω

イロト イ押ト イヨト イヨトー

- 1. Process convergence of two-sample empirical *U*-process and *U*-quantiles.
- 2. Study of the process

$$
\sum_{i=1}^{\lfloor \lambda\,n \rfloor} \sum_{j=\lfloor \lambda\,n \rfloor+1}^n 1_{\{X_i-X_j \leq t\}},\ 0\leq \lambda \leq 1,
$$

as well as the associated *U*-quantile process.

3. Application to robust change-point tests with dependent data.

4 0 5

E K

- - HEROLD DEHLING and ROLAND FRIED: Robust estimation for two sample problems with dependent data. *Work in progress*
- H MARTIN WENDLER: Bahadur representation for *U*-quantiles of dependent data. *Preprint*
- HEROLD DEHLING and AENEAS ROOCH: Two sample *U*-statistics for long-range dependent data. *Work in progress*

 Ω

 $\left\{ \bigcap_{i=1}^{n} x_i \in \mathbb{R} \right\}$, $\left\{ \bigcap_{i=1}^{n} x_i \in \mathbb{R} \right\}$