Asymptotic Distribution of Two-Sample Empirical U-Quantiles for Dependent Data

Herold Dehling

(joint work with Roland Fried (TU Dortmund) and Martin Wendler)

RUHR-UNIVERSITÄT BOCHUM

Limit Theorems for Dependent Data and Applications Conference in honor of Professor Magda PELIGRAD ONE SAMPLE CASE: X_1, \ldots, X_n ; define the Hodges-Lehmann estimator for the location

$$median\{\frac{1}{2}(X_i + X_j) : 1 \le i < j \le n\}$$

TWO SAMPLE CASE: $X_1, \ldots, X_{n_1}, Y_1, \ldots, Y_{n_2}$; define the Hodges-Lehmann estimator for the difference in location

median{ $(X_i - Y_j) : 1 \le i \le n_1, 1 \le j \le n_2$ }.

We are interested in the asymptotic distribution of such estimators in the case of dependent data.

Sac

Definition (Halmos 1946, Hoeffding 1948, von Mises 1947)

Given a process $(X_i)_{i\geq 1}$ of iid random variables with marginal distribution *F* and a symmetric kernel $h : \mathbb{R}^2 \to \mathbb{R}$, we define the bivariate *U*- and *V*-statistics statistics with kernel *h* by

$$U_n(h) := \frac{1}{\binom{n}{2}} \sum_{1 \le i < j \le n} h(X_i, X_j),$$

$$V_n(h) := \frac{1}{n^2} \sum_{1 \le i, j \le n} h(X_i, X_j).$$

- ► *U* and *V*-statistics are generalized means of $h(X_i, X_j)$, 1 ≤ *i* < *j* ≤ *n* (resp. 1 ≤ *i*, *j* ≤ *n*)
- ► Analogously one can define *m*-variate U- and V-statistics

Sac

Examples

• $h(x, y) = \frac{1}{2}(x - y)^2$ leads to the sample variance

$$U_n(h) = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$$

►
$$h(x,y) = \int (1_{(-\infty,s]}(x) - F_0(s))(1_{(-\infty,s]}(y) - F_0(s))w(s)dF_0(s);$$

 $V_n(h) = \int (F_n(s) - F_0(s))^2w(s)dF_0(s);$

Cramer-von Mises test statistic for testing the hypothesis $H: F = F_0$.

h(*x*, *y*) = log(||*x* − *y*||) leads to the Takens' estimator of the correlation dimension of the distribution *F*.
 (Floris Takens (12.11.1940–20.06.2010))

Sac

Hoeffding Decomposition I

The tool for the analysis of *U*-statistics:

r

$$\begin{array}{rcl} \theta & := & Eh(X_1, X_2) \\ h_1(x) & := & Eh(x, X) - \theta \\ h_2(x, y) & := & h(x, y) - h_1(x) - h_1(y) - \theta. \end{array}$$

We obtain the decomposition of *h* and of the *U*-statistic

$$h(x, y) = \theta + h_1(x) + h_1(y) + h_2(x, y)$$

$$U_n(h) = \theta + \frac{2}{n} \sum_{i=1}^n h_1(X_i) + U_n(h_2)$$

The functions h_1 and h_2 satisfy $\int h_1(x)dF(x) = 0$ and

$$\int h_2(x,y)dF(x) = 0 \quad \text{(degeneracy)}$$

Sac

The terms in the summands on the r.h.s. are uncorrelated (!) and thus

$$\operatorname{Var}(\frac{2}{n}\sum_{i=1}^{n}h_{1}(X_{i})) = \frac{4}{n}\operatorname{Var}(h_{1}(X_{1}))$$
$$\operatorname{Var}(U_{n}(h_{2})) = \frac{1}{\binom{n}{2}}\operatorname{Var}(h_{2}(X_{1}, X_{2})).$$

- Generally, the linear term $\frac{2}{n} \sum_{i=1}^{n} h_1(X_i)$ is dominating. Limit theorems can be obtained by using classical limit theorems for partial sums and a control of the remainder term $U_n(h_2)$.
- ► Non-classical limit theory in the *degenerate case*, when $Var(h_1(X)) = 0$.

< 回 > < 回 > < 回 >

(1) Law of Large Numbers (Hoeffding 1961, Berk 1966)

 $U_n(h) \rightarrow \theta$ a.s.

(2) Central Limit Theorem (Hoeffding 1948)

 $\sqrt{n}(U_n(h) - \theta) \rightarrow N(0, 4 \operatorname{Var}(h_1(X)))$ in distribution,

(3) Law of the Iterated Logarithm (Sen 1972)

$$\limsup_{n\to\infty}\frac{\sqrt{n}}{\sqrt{2\log\log n}}(U_n(h)-\theta)=2\operatorname{Var}(h_1(X))\quad a.s.$$

The functional versions of these limit theorems also hold.

Sac

Degenerate U- Statistic Limit Theorems

Let $h \in L_2([0, 1]^2)$ be degenerate and let $(X_i)_{i \ge 1}$ be independent U([0, 1])-distributed. Then

(1) Degenerate U-statistics CLT (Fillipova 1964)

$$n(U_n(h)- heta)
ightarrow \int \int h(x,y) dW_0(x) dW_0(y).$$

where $(W_0(t))_{0 \le t \le 1}$ is standard Brownian bridge.

(2) Degenerate U-statistics LIL (D., Denker, Philipp 1984, D. 1989)

$$\limsup_{n \to \infty} \frac{1}{n \log \log n} \sum_{1 \le i < j \le n} h(X_i, X_j)$$

= sup $\left\{ \int \int f(x) f(y) h(x, y) dx dy : \int f^2(x) dx = 1 \right\}$ a.s.

Sac

A (10) + A (10) +

Definition (Absolutely regular process)

(i) Let (Ω, \mathcal{F}, P) be a probability space and let \mathcal{A} and \mathcal{B} be two sub- σ -fields of \mathcal{F} . We then define

$$\beta(\mathcal{A},\mathcal{B}) := \sup \sum_{i=1}^{m} \sum_{j=1}^{n} |P(\mathcal{A}_i \cap \mathcal{B}_j) - P(\mathcal{A}_i) P(\mathcal{B}_j)|,$$

supremum taken over all partitions of Ω into set $A_1, \ldots, A_m \in A$, all partitions of Ω into sets $B_1, \ldots, B_n \in B$ and all $m, n \ge 1$.

(ii) The process $(X_i)_{i\geq 1}$ is called absolutely regular, if for $k \to \infty$

$$\beta(k) := \sup_{n} \beta(\mathcal{F}_{1}^{n}, \mathcal{F}_{n+k}^{\infty}) \to 0,$$

where \mathcal{F}_{k}^{l} is the σ -field generated by X_{k}, \ldots, X_{l} .

3

Sac

More generally, we consider functionals of absolutely regular processes, i.e. we assume that $(X_i)_{i\geq 1}$ has a representation

 $X_i = f((Z_{n+i})_{n \in \mathbb{Z}}),$

where $(Z_n)_{n \in \mathbb{Z}}$ is an absolutely regular process and $f : \mathbb{R}^{\mathbb{Z}} \to \mathbb{R}$ satisfies some continuity property.

Large classes of processes can be expressed in this way, e.g.

- ARMA processes
- Many dynamical systems X_n = Tⁿ(X₀), e.g. if T : [0, 1] → [0, 1] is expanding (Hofbauer, Keller 1984).

For details and more examples, see Borovkova, Burton, D. (2001).

Sac

Theorem (Aaronson, Burton, D., Gilat, Hill, Weiss 1996)

If one of the following two conditions is satisfied,

(i) h is $F \times F$ almost everywhere continuous and bounded (ii) the process $(X_k)_{k\geq 1}$ is absolutely regular and h is bounded, the U-statistics ergodic theorem holds, i.e.

$$\frac{1}{\binom{n}{2}}\sum_{1\leq i< j\leq n}h(X_i,X_j)\to \int\int h(x,y)dF(x)dF(y)$$

Aaronson et al. (1996) gave counterexamples in case the above conditions are not satisfied: the *U*-statistic ergodic theorem may fail for ergodic processes $(X_i)_{i\geq 1}$.

Sac

Dependent U-Statistics CLT

Theorem

Under some technical conditions on h(x, y) and $(X_i)_{i \ge 1}$,

$$\sqrt{n}(U_n(h) - \theta) \rightarrow N(0, 4\sigma^2),$$

where

$$\sigma^{2} := \operatorname{Var}(h_{1}(X_{1})) + 2\sum_{i=2}^{\infty} \operatorname{Cov}(h_{1}(X_{1}), h_{1}(X_{i}))$$

- Absolutely regular processes: Yoshihara (1976)
- Functionals of absolutely regular processes: Denker and Keller (1983, 1985), Borovkova, Burton, D. (2001)
- Strongly mixing processes: D., Wendler (2010)

Results on degenerate kernels have been obtaines by Babbel (1989), Kanagawa, Yoshihara (1998), Leucht, Neumann (2010).

Empirical U-Process CLT

Given a symmetric kernel f(x, y), define the empirical *U*-distribution function

$$U_n(t) = \frac{1}{\binom{n}{2}} \sum_{1 \le i < j \le n} \mathbf{1}_{\{f(X_i, X_j) \le t\}}$$

and the empirical *U*-process $\sqrt{n}(U_n(t) - U(t))$, where $U(t) = P(f(X, Y) \le t)$.

Theorem (Serfling 1984, Arcones, Yu 1994, Borovkova, Burton, D. 2001)

Let $(X_i)_{i\geq 1}$ be a functional of an absolutely regular process. Then under some technical conditions on f(x, y) and $(X_i)_{i\geq 1}$,

$$(\sqrt{n}(U_n(t)-U(t)))_{t\geq 0} \stackrel{\mathcal{D}}{\longrightarrow} (W(t))_{t\geq 0},$$

where $(W(t))_{t\geq 0}$ is a mean-zero Gaussian process.

Sac

Example: The Hodges-Lehmann estimator of location

is the 50% quantile of the empirical distribution $U_n(\cdot)$ of the pairwise means $\frac{1}{2}(X_i + X_j)$, $1 \le i < j \le n$. More general, we define the empirical (one sample) *U*-quantile

$$U_n^{-1}(p) := \inf \{t : U_n(t) \ge p\}.$$

Sac

< 回 ト < 三 ト < 三 ト

Theorem (Wendler, 2010)

Let $(X_i)_{i \ge 1}$ be a functional of an absolutely regular process. Then under some technical conditions, we have for any $0 < p_1 < p_2 < 1$

$$\left(\sqrt{n}\left(U_n^{-1}(p)-U^{-1}(p)\right)\right)_{p\in(p_1,p_2)}\xrightarrow{\mathcal{D}}\left(\frac{1}{U'(U^{-1}(p))}W(U^{-1}(p))\right)_{p\in(p_1,p_2)}$$

The functional LIL also holds.

Sac

< 回 ト < 三 ト < 三 ト

4 🗖 🕨

Basic tool in the treatment of the empirical *U*-quantiles is the Bahadur-Kiefer representation, i.e.

$$U_n^{-1}(p) - U^{-1}(p) = rac{p - U_n(U^{-1}(p))}{U'(U^{-1}(p))} + R_n(p).$$

Theorem (Wendler, 2010)

Under the same technical assumptions as in the previous theorem

$$\sup_{p \in (p_1, p_2)} R_n(p) = o(n^{-\frac{23}{40}}) \quad a.s.$$

Sac

• • • • • • • • • • • •

The two sample Hodges-Lehmann estimator

 $median\{(X_i - Y_j) : 1 \le i \le n_1, 1 \le j \le n_2\}.$

is the 50% quantile of the empirical distribution $U_{n_1,n_2}(\cdot)$ of the differences $X_i - Y_j$, $1 \le i \le n_1$, $1 \le j \le n_2$,

$$U_{n_1,n_2}(t) = \frac{1}{n_1 n_2} \# \{ 1 \le i \le n_1, 1 \le j \le n_2 : X_i - Y_j \le t \}$$

More generally, we define the two-sample empirical U-quantiles

$$Q_{n_1,n_2}(p) = \inf\{t : U_{n_1,n_2}(t) \ge p\}, \ 0 \le p \le 1.$$

Sac

Two Sample U-Process, U-Quantile Process

The empirical U-distribution function and U-quantiles,

$$U_{n_1,n_2}(t) = \frac{1}{n_1 n_2} \# \{ 1 \le i \le n_1, 1 \le j \le n_2 : X_i - Y_j \le t \}$$

$$Q_{n_1,n_2}(p) = \inf \{ t : U_{n_1,n_2}(t) \ge p \},$$

are the natural estimator of the distribution function and the quantiles of X - Y, where X, Y are independent,

 $H(t) = P(X - Y \le t)$ $Q(p) = \inf\{t : H(t) \ge p\}.$

We will investigate the asymptotic distributions of

$$\frac{\sqrt{n_1 + n_2}(U_{n_1,n_2}(t) - H(t))}{\sqrt{n_1 + n_2}(Q_{n_1,n_2}(p) - Q(p))}.$$

Sac

Dependence in the Two Sample Problem

In the standard two sample problem,

 X_1,\ldots,X_{n_1} ~ F Y_1,\ldots,Y_{n_2} ~ G

all observations are independent. We study two situations

- 1. Given are two stationary ergodic processes $(X_i)_{i\geq 1}$ and $(Y_j)_{j\geq 1}$, independent of each other.
- 2. Given is one stationary ergodic process $(X_i)_{i\geq 1}$ and

 $Y_j = X_{n_1+j}, \ 1 \leq j \leq n_2.$

The asymptotic distributions of our statistics are the same in both cases, at least for weakly dependent observations.

Sac

• □ ▶ • @ ▶ • E ▶ • E ▶

Two Sample U-Statistics

The two sample empirical U-distribution function,

$$U_{n_1,n_2}(t) = \frac{1}{n_1 n_2} \# \{ 1 \le i \le n_1, 1 \le j \le n_2 : X_i - Y_j \le t \}$$

= $\frac{1}{n_1 n_2} \sum_{i=1}^{n_1} \sum_{j=1}^{n_2} 1_{\{X_i - Y_j \le t\}},$

is a special case of a two sample U-statistic, defined as

$$U_{n_1,n_2} = \frac{1}{n_1 n_2} \sum_{i=1}^{n_1} \sum_{j=1}^{n_2} h(X_i, Y_j).$$

We will begin our investigations by studying the asymptotic distribution of U_{n_1,n_2} as $n_1, n_2 \rightarrow \infty$.

Sac

As in the case of independent observations, the analysis of the asymptotic behavior of *U*-statistics uses the Hoeffding decomposition. We introduce the following quantities,

$$\theta = Eh(X, Y)$$

$$h_1(x) = Eh(x, Y) - \theta$$

$$h_2(y) = Eh(X, y) - \theta$$

$$g(x, y) = h(x, y) - h_1(x) - h_2(y) - \theta,$$

and observe that

$$h(x, y) = \theta + h_1(x) + h_2(y) + g(x, y).$$

Sac

∃ ► 4 Ξ

Hoeffding Decomposition II

The decomposition of the kernel h(x, y) leads to the Hoeffding decomposition of the *U*-statistic,

$$U_{n_1,n_2} = \theta + \frac{1}{n_1} \sum_{i=1}^{n_1} h_1(X_i) + \frac{1}{n_2} \sum_{j=1}^{n_2} h_2(Y_j) + \frac{1}{n_1 n_2} \sum_{i=1}^{n_1} \sum_{j=1}^{n_2} g(X_i, Y_j).$$

The functions $h_1(x)$, $h_2(y)$ have the property

$$Eh_1(X)=Eh_2(Y)=0,$$

i.e. $\sum_{i=1}^{n_1} h_1(X_i)$ and $\sum_{i=1}^{n_2} h_2(Y_i)$ are sums of mean zero random variables. Moreover,

$$Eg(X, y) = Eg(x, Y) = 0$$
 (degenerate)

Sac

Theorem (D., Fried (2010))

Let $(X_i)_{i\geq 1}$ and $(Y_i)_{i\geq 1}$ be functionals of absolutely regular processes satisfying $\sum_{k=1}^{\infty} k \beta(k) < \infty$ and assume that $E|h(X, Y)|^{2+\epsilon} < \infty$, for some $\epsilon > 0$. Then, as $n_1, n_2 \to \infty$ so that $\frac{n_1}{n_1+n_2} \to \lambda \in (0, 1)$, we have

$$\sqrt{n_1+n_2}(U_{n_1,n_2}-\theta) \rightarrow N(0,\sigma^2),$$

where

$$\sigma^2 = \frac{1}{\lambda} \left(\operatorname{Var}(h_1(X)) + 2 \sum_{i=2}^{\infty} \operatorname{Cov}(h_1(X_1), h_1(X_i)) \right)$$
$$+ \frac{1}{1 - \lambda} \left(\operatorname{Var}(h_2(Y)) + 2 \sum_{i=2}^{\infty} \operatorname{Cov}(h_2(Y_1), h_2(Y_i)) \right)$$

Sac

ヘロト 人間 とくほ とくほう

Two Sample U-Statistic CLT: Idea of Proof

Lemma (D., Fried 2010)

Let $(X_i)_{i\geq 1}$ and $(Y_i)_{i\geq 1}$ be functionals of absolutely regular processes with mixing coefficients satisfying $\sum_{k=1}^{\infty} k \beta(k) < \infty$. Then

$$E\left(\sum_{i=1}^{n_1}\sum_{j=1}^{n_2}g(X_i,Y_j)\right)^2 \le C n_1 n_2$$
(7)

where C is some constant, not depending on n_1 and n_2 .

The proof uses generalized correlation inequalities, i.e. bounds on

 $Ef(\xi_1,\xi_2) - Ef(\xi'_1,\xi'_2)$

where ξ'_1, ξ'_2 are independent with the same marginal distributions as ξ_1, ξ_2 .

Two Sample U-Process/U-Quantiles Revisited

Recall the definition of the empirical U-distribution function and U-quantiles:

$$U_{n_1,n_2}(t) = \frac{1}{n_1 n_2} \# \{ 1 \le i \le n_1, 1 \le j \le n_2 : X_i - Y_j \le t \}$$

= $\frac{1}{n_1 n_2} \sum_{i=1}^{n_1} \sum_{j=1}^{n_2} 1_{\{X_i - Y_j \le t\}}$
 $Q_{n_1,n_2}(p) = \inf\{t : U_{n_1,n_2}(t) \ge p\},$

together with

$$\begin{array}{lll} H(t) &=& P(X-Y\leq t)\\ Q(p) &=& \inf\{t\,:\, H(t)\geq p\}. \end{array}$$

Sac

∃ ► < ∃ ►</p>

Two Sample Empirical U-Process CLT

Theorem (D., Fried 2010)

Let $(X_i)_{i\geq 1}$ and $(Y_i)_{i\geq 1}$ be functionals of absolutely regular processes satisfying $\sum_{k=1}^{\infty} k\beta(k) < \infty$. Let $n_1, n_2 \to \infty$ so that $\frac{n_1}{n_1+n_2} \to \lambda \in (0, 1)$. Then, for any $t \in \mathbb{R}$,

$$\sqrt{n_1+n_2}(U_{n_1,n_2}(t)-H(t)) \to N\left(0,\frac{\sigma_1^2(t)}{\lambda}+\frac{\sigma_2^2(t)}{1-\lambda}\right)$$

in distribution, where

$$\sigma_1^2(t) = \operatorname{Var}(G(X_1 - t)) + 2\sum_{k=2}^{\infty} \operatorname{Cov}(G(X_1 - t), G(X_k - t))$$

$$\sigma_2^2(t) = \operatorname{Var}(F(Y_1 + t)) + 2\sum_{k=2}^{\infty} \operatorname{Cov}(F(Y_1 + t), F(Y_k + t))$$

Bahadur-Kiefer Representation

The asymptotic distribution of the empirical *U*-quantiles can be derived from that of the empirical *U*-process with the help of the Bahadur-Kiefer representation

$$Q_{n_1,n_2}(p) = Q(p) + rac{p - U_{n_1,n_2}(Q(p))}{H'(Q(p))} + R_{n_1,n_2},$$

where R_{n_1,n_2} is a "small" remainder term.

Theorem (D., Fried 2010)

Let $(X_i)_{i\geq 1}$ and $(Y_i)_{i\geq 1}$ be functionals of absolutely regular processes with mixing coefficients $\beta(k)$ satisfying $\sum_{k=1}^{\infty} k\beta(k) < \infty$. Then for any 0 we have

$$Q_{n_1,n_2}(p) = Q(p) + rac{p - U_{n_1,n_2}(Q(p))}{H'(Q(p))} + R_{n_1,n_2}$$

where $R_{n_1,n_2} = o_P(\frac{1}{\sqrt{n_1+n_2}}).$

Theorem (D., Fried 2010)

Let $(X_i)_{i\geq 1}$ and $(Y_i)_{i\geq 1}$ be stationary, absolutely regular processes satisfying $\sum_{k=1}^{\infty} k\beta(k) < \infty$. Let $n_1, n_2 \to \infty$ so that $\frac{n_1}{n_1+n_2} \to \lambda \in (0, 1)$. Then

$$\sqrt{n_1 + n_2}(Q_{n_1, n_2}(p) - Q(p)) \\ \longrightarrow N\left(0, \frac{1}{(H'(Q(p)))^2} \left(\frac{\sigma_1^2(Q(p))}{\lambda} + \frac{\sigma_2^2(Q(p))}{1 - \lambda}\right)\right)$$

where $\sigma_1^2(Q(p))$ and $\sigma_2^2(Q(p)))$ are defined as above.

Sac

• □ ▶ • @ ▶ • ■ ▶ • ■ ▶

- 1. Process convergence of two-sample empirical *U*-process and *U*-quantiles.
- 2. Study of the process

$$\sum_{i=1}^{[\lambda n]} \sum_{j=[\lambda n]+1}^{n} \mathbf{1}_{\{X_i - X_j \le t\}}, \ 0 \le \lambda \le 1,$$

as well as the associated U-quantile process.

3. Application to robust change-point tests with dependent data.

Sac

< 17 × <

- HEROLD DEHLING and ROLAND FRIED: Robust estimation for two sample problems with dependent data. *Work in progress*
- MARTIN WENDLER: Bahadur representation for *U*-quantiles of dependent data. *Preprint*
- HEROLD DEHLING and AENEAS ROOCH: Two sample U-statistics for long-range dependent data. Work in progress

Sac

< 🗇 🕨 🖌 🖉 🕨 🗸 🖻