FUNCTIONAL LIMIT THEOREMS FOR VON MISES STATISTICS OF A MEASURE PRESERVING TRANSFORMATION

Mikhail Gordin

V.A. Steklov Institute of Mathematics Saint Petersburg

> Limit theorems for dependent data and applications

Paris, June 21 – 23, 2010

INTRODUCTION: V-STATISTICS OF A TRANSFORMATION

POEFFDING'S AND M-C DECOMPOSITIONS

Mikhail Gordin FUNCTIONAL LIMIT THEOREMS

A (10) + A (10) +

크

INTRODUCTION: V-STATISTICS OF A MEASURE PRESERVING TRANSFORMATION

(after a joint work with Herold Dehling and Manfred Denker)

V-statistics

Let *T* be a measure preserving transformation of a probability space (Ω, \mathcal{F}, P) . Choose a point $\omega \in \Omega$ and consider its n-**orbit**

$$\omega, T\omega, \ldots, T^{n-1}\omega$$

From statistician's point of view this is a **sample** of size *n*. Let us consider, for a certain measurable symmetric function $h: \Omega^d \to \mathbb{R}$, the expression

$$\sum_{\leq i_1 < n, \dots, 1 \leq i_d \leq n} h(T^{i_1}\omega, \dots, T^{i_d}\omega).$$
(1)

Such a functional will be called a V-statistic (or von Mises statistic) of degree d with the kernel h.

BACK TO CLASSICAL DEFINITION

Let $X = (X_n)_{n \in \mathbb{Z}}$ be a strictly stationary real-valued sequence. Every such X admits a representation of the form

$$X_n=f\circ T^n, n\in Z,$$

where *T* is a measure preserving invertible transformation of a certain probability space and *f* is a measurable function. Let $H : \mathbb{R}^d \mapsto \mathbb{R}$ be a Borel measurable function. If we set

$$h(\omega_1,\ldots,\omega_d)=H(f(\omega_1),\ldots,f(\omega_d)),$$

we arrive from (1) at the standard expressions for a V-statistic:

$$\sum_{1 \le i_1 < n, \dots, 1 \le i_d \le n} H(X_{i_1}, \dots, X_{i_d}).$$
(2)

GENERATION BY DYNAMICS

Dynamics can be used as follows to generate the function

$$\omega \mapsto h(T^{i_1}\omega,\ldots,T^{i_d}\omega).$$

First, we consider an action of *d* commuting copies T_1, \ldots, T_d of *T* on some set $Y \subset \Omega^d$ to produce terms of the form

$$h(T_1^{i_1}\omega_1,\ldots,T_d^{i_d}\omega_d).$$

Second, we restrict the constructed function to the **principal diagonal** $D = \{(\omega, ..., \omega) : \omega \in \Omega\} \subset \Omega^d$ and obtain the desired term. The requirements which *Y* must satisfy are: i) $T_k Y \subset Y, k = 1, ..., d$; ii) $D \subset Y$. We choose as *Y* the **entire space** Ω^d with the **product measure** P^d and the **componentwise action** of copies

of T.

RESTRICTION PROBLEM

Let $h: \Omega^d \to \mathbb{R}$ be (an equivalence class) of a certain measurable function on Ω^d . Consider the set

$$\bigcup_{(n_1,\ldots,n_d)\in\mathbb{Z}^d}\{(T_1^{n_1}\omega,\ldots,T_d^{n_d}\omega),\omega\in\Omega\}$$

of measure zero. For d = 2 this is the graph of the orbital equivalence relation of *T*.

What is the correct restriction of *h* to subsets of this set ? In general, no idea.

However, the restriction problem is easily solvable for kernels *h* which are products of functions in one variable, or can be nicely approximated by sums of such functions. We will use such an approximation.

過 とう ヨ とう ヨ とう

FCLT

SOME REFERENCES ON V- AND U-STATISTICS

Seminal papers

Hoeffding (1948): U-statistics for i.i.d. variables; Hoeffding's decomposition *von Mises* (1949): *V*-statistics for i.i.d. variables

Books (i.i.d. variables): *Borovskikh* and *Korolyuk* (1989) *Giné* and *de la Peña* (1999)

A (1) < (1) < (2) < (2) </p>

FCLT

SOME REFERENCES, CONTINUED

Dependent stationary case:

Kanagawa and Yoshihara (1994): a. s. invariance principle for completely degenerate (canonical) U-statistics of degree two Aaronson, Burton, Dehling, Gilat, Hill and Weiss (1996): strong law of large numbers Two papers by Borovkova, Burton and Dehling (2001): a version of the FCLT (along with other results) Borisov, Volod'ko (2008): the CLT for power series' in a weakly dependent sequence Mixing conditions, in particular, absolute regularity are assumed; the coupling method, the method of moments e.t.c. are employed

TENSOR PRODUCTS

Let for every $1 \le p \le \infty \hat{L}_{p}(P^{d})$ denote the **projective** (or **maximal**) tensor product

$$L_{\rho}(\Omega_1, \mathcal{F}_1, \mathcal{P}_1) \hat{\otimes} \cdots \hat{\otimes} L_{\rho}(\Omega_d, \mathcal{F}_d, \mathcal{P}_d).$$

Since the projective norm is stronger than the norm of $L_p(P^d)$, $\hat{L}_p(P^d)$ can be embedded into $L_p(P^d)$. **Example.** For p = 2 and d = 2 the space $\hat{L}_2(P^2)$ can be identified with the space of (the kernels of) the **trace class operators** mapping $L_2(P)^*$ to $L_2(P)$. The space $\hat{L}_p(P^d)$ is preserved by the operators $(U^n, U^{*n})_{n \in \mathbb{Z}_+^d}$. We will use the denotation $(U^n, U^{*n})_{n \in \mathbb{Z}_+^d}$ for the restrictions of (U^n, U^{*n}) to $\hat{L}_p(P^d)$ as well.

< □ > < □ > < □ > □ Ξ

INTRODUCTION: V-STATISTICS OF A TRANSFORMATION

HOEFFDING'S AND M-C DECOMPOSITIONS

FCLT

RESTRICTION TO THE DIAGONAL

Proposition

Let $p_1, \ldots, p_d, r \in [1, \infty]$ satisfy $\sum_{i=1}^d 1/p_i = 1/r$. Then the map sending every function

$$(\omega_1,\ldots,\omega_d)\mapsto f_1(\omega_1)\cdots f_l(\omega_d)$$

with $f_1 \in L_{p_1}, \ldots, f_d \in L_{p_d}$ to the function

 $\omega\mapsto f_1(\omega)\cdots f_d(\omega)$

extends in a unique way to a linear operator of norm 1

$$D_d: L_{p_1} \hat{\otimes} \cdots \hat{\otimes} L_{p_d} \rightarrow L_r.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

INTRODUCTION: V-STATISTICS OF A TRANSFORMATION

HOEFFDING'S AND M-C DECOMPOSITIONS FCI T

APPROXIMATING RESTRICTION

Remark

Let $(\mathcal{A}_n)_{n\geq 1}$ be a refining sequence of finite measurable partitions $\mathcal{A}_n = \{A_{1,n}, \ldots, A_{m_n,n}\}$ such that \mathcal{F} is the smallest σ -field containing all $\mathcal{A}_n, n \geq 1$. Then the operator D_d can be represented as a strong limit of the sequence of operators $(D_{d,n})_{n\geq 1}$, where

$$D_{d,n}f =$$

$$\sum_{i=1}^{m_n} \frac{I_{A_{i,n}}}{P(A_{i,n})^d} \int_{A_{i,n}^d} f(\omega_1,\ldots,\omega_d) P(d\omega_1) \cdots P(d\omega_d).$$

・ロト ・四ト ・ヨト ・ヨト

COMMUTING COPIES OF T

Let T_1, \ldots, T_d be copies of the transformation T which act on Ω^d via

$$T_i(\omega_1,\ldots,\omega_i,\ldots,\omega_d) = (\omega_1,\ldots,T_i\omega_i,\ldots,\omega_d), i = 1,\ldots,d.$$

Let \mathbb{Z}_{+}^{d} be the additive semigroup of d-tuples of nonnegative integers. The transformations T_{1}, \ldots, T_{d} pairwise commute and give rise to the measure preserving action $\mathbf{n} = (n_{1}, \ldots, n_{d}) \mapsto T^{\mathbf{n}} = T_{1}^{n_{1}} \cdots T_{d}^{n_{d}}$, of \mathbb{Z}_{+}^{d} on $(\Omega, \mathcal{F}, P)^{d}$. Set $U_{k}f = f \circ T_{k}$ for $f \in L_{p}$. Let U_{k}^{*} be the adjoint of U_{k} and I denote the identity operator. Clearly, U_{1}, \ldots, U_{d} pairwise commute, and so are $U_{1}^{*}, \ldots, U_{d}^{*}$.

(部) (注) (主) (主)

V-STATISTICS: DEFINITION

From now on by a *V*-statistics of a measure preserving transformation *T* acting on a probability space (Ω, \mathcal{F}, P) we mean the function of the form

$$\frac{1}{N^{d}} \sum_{1 \le n_k \le N, \, k=1, \dots, d} D_d \big(h \circ T^{(n_1, \dots, n_d)} \big).$$
(3)

The function *h* is called the **kernel** of the corresponding *V*-statistics.

STRONG LAW OF LARGE NUMBERS

Let T_1, \ldots, T_d be copies (acting on the cartesian product) of a transformation *T*. Remind that $\hat{L}_{p,\pi}(P^d) = L_p^{\hat{\otimes}d}$.

Theorem

Let $d \ge 2$, $p \ge d$ and r = p/d. Let T be an **ergodic** *P*-preserving transformation of the space (Ω, \mathcal{F}, P) . Assume also that $f \in \hat{L}_{p,\pi}(P^d)$. Then, as $N \to \infty$, the sequence

$$\frac{1}{N^{d}} \sum_{1 \le n_k \le N, \, k=1,...,d} D_d (f \circ T^{(n_1,...,n_d)})$$
(4)

converges with probability 1 and in $L_r(P)$ to the limit

$$\int_{\Omega^d} f(\omega_1,\ldots,\omega_d) P(d\omega_1) \cdots P(d\omega_d).$$

INTRODUCTION: V-STATISTICS OF A TRANSFORMATION

HOEFFDING'S AND M-C DECOMPOSITIONS FCLT

CASE p = d

Corollary

If p = d, the above Theorem applies and asserts the convergence with probability 1 and in L_1 .

(日) (圖) (E) (E) (E)

HOEFFDING'S AND MARTINGALE-COBOUNDARY DECOMPOSITIONS

Mikhail Gordin FUNCTIONAL LIMIT THEOREMS

HOEFFDING'S DECOMPOSITION: DEFINITION

Let (Ω, \mathcal{F}, P) be a probability space and

$$\Omega^d = \prod_{i=1}^d \Omega_i, \mathcal{F}^d = \prod_{i=1}^d \mathcal{F}_i, \mathcal{P}^d = \prod_{i=1}^d \mathcal{P}_i,$$

where $\Omega_1, \ldots, \Omega_d, \mathcal{F}_1, \ldots, \mathcal{F}_d, P_1, \ldots, P_d$ are copies of Ω , \mathcal{F} and P, respectively. Denoting by π_i the projection from Ω^d onto Ω_i ($i = 1, \ldots, d$), we set for every $S \in \mathcal{S}_d$ $\mathcal{F}^S = \bigvee_{i \in S} \pi_i^{-1}(\mathcal{F}_i), \ E^S = E^{\mathcal{F}_S}, \ \hat{E}^i = E^{\{1,\ldots,d\} \setminus \{i\}}.$

In other terms, \hat{E}^i integrates out the *i*-th variable. The identity *I* in $L_p(P^d)$ decomposes as

$$I = \prod_{i=1}^{d} \left(\hat{E}^{i} + (I - \hat{E}^{i}) \right) = \sum_{k=0}^{d} \sum_{S \in S_{d}^{k}} \prod_{i \notin S} \prod_{i \in S} \prod_{i \in S} \left(I - \hat{E}^{i} \right)$$

CANONICAL KERNELS: DEFINITION

For every $\boldsymbol{\mathcal{S}}\in\mathcal{S}_d^k$ the function

 $\prod_{i\notin S} \hat{E}^i \prod_{i\in S} (I - \hat{E}^i) f$

can be thought of as a function f_S of k variables $\omega_m, m \in S$, with the property

$$\int_{\Omega} f_{\mathcal{S}}(\cdots,\omega_i,\cdots) \mathcal{P}(\boldsymbol{d}\omega_i) = 0$$

for every $i \in S$. Functions of k variables with this property are called **completely degenerate** or **canonical**. Observe, that for f symmetric we obtain a symmetric function of k variables.

NON-INVERTIBILITY AND EXACTNESS ASSUMPTIONS

The second order (compared to the SLLN) asymptotics for V-statistics can be studied by means of a T-invariant filtration and martingale approximation. We consider a (non-invertible) transformation T and its canonical decreasing filtration $(T^{-n}\mathcal{F})_{n>0}$. This is equivalent, up to time reversal, to considering invertible transformations, decreasing filtrations and adapted random sequences. For simplicity we assume that the transformation T is **exact**. This means that $\bigcap_{k=0}^{\infty} T^{-k} \mathcal{F} = \mathcal{N}$, where \mathcal{N} is the trivial sub σ -field of \mathcal{F}

COMPLETE COMMUTATION OF COPIES OF T

For every $k = 1, \ldots, d, n \ge 0$ we have

$$U_k^{*n}U_k^n = I$$
 and $U_k^nU_k^{*n} = E^{T_k^{-n}\mathcal{F}^{\times d}}$.

Observe that for every $1 \le i, j \le d, i \ne j$, we have

$$U_iU_j^*=U_j^*U_i.$$

Transformations T_1, \ldots, T_d are **completely commuting** which means that they commute and enjoy the above property. The complete commutativity implies that the conditional expectations $(E^{T_k^{-n}\mathcal{F}^{\times d}})_{n\geq 0, k=1,...,d}$ commute.

FILTRATION FOR \mathbb{Z}_+^d -ACTION ON $(\Omega, \mathcal{F}, P)^d$

For every $\mathbf{n} = (n_1, \dots, n_d) \in \mathbb{Z}^d_+$ we set

$$\mathcal{F}^{\mathbf{n}} = T^{-\mathbf{n}} \mathcal{F}^{\times d}, \ \mathbf{E}^{\mathbf{n}} = \mathbf{E}^{\mathcal{F}^{\mathbf{n}}}.$$

Let $\mathbb{Z}^d_+ = \{0, 1, \dots, \infty\}^d$ be a **completion** of \mathbb{Z}^d_+ endowed with the natural partial order \leq which extends that of \mathbb{Z}^d_+ . Let us extend by continuity the families $(\mathcal{F}^n)_{\mathbb{Z}^d}$ and $(E^n)_{\mathbb{Z}^d}$ to $\overline{\mathbb{Z}^d_+}$. Thus, $(\mathcal{F}^n)_{n\in\overline{\mathbb{Z}^d}}$ is a decreasing filtration parameterized by the partially ordered set $\overline{\mathbb{Z}^d}$. Let $(\mathbf{I}, \mathbf{m}) \mapsto \mathbf{I} \lor \mathbf{m}$ be the operation of taking the coordinatewise maximum in \mathbb{Z}^d_{\perp} . We have $E^{I}E^{m} = E^{m}E^{I} = E^{I} \vee m$ for all $I, m \in \mathbb{Z}_{+}^{d}$, that is the σ -fields \mathcal{F}^{I} and \mathcal{F}^{m} are conditionally independent aiven $\mathcal{F}^{I \vee m}$

MULTIPARAMETER MARTINGALE DIFFERENCES

Definition

Let $(X_n, \mathcal{F}^n)_{n \in \mathbb{Z}_+^d}$ be a family of random variables defined on (Ω, \mathcal{F}, P) and sub- σ -fields of \mathcal{F} . $(X_n, \mathcal{F}^n)_{n \in \mathbb{Z}_+^d}$ is said to be a family of *reversed martingale differences* if

- the map Z^d₊ ∋ n → 𝔅ⁿ is decreasing (Z^d₊ is taken with its natural partial order, the σ-fields are ordered by inclusion);
- If or every n ∈ Z^d₊ the random variable X_n is measurable with respect to Fⁿ;

③
$$E^{\mathcal{F}^{\mathsf{m}}}X_{\mathsf{n}} = 0$$
 whenever $\mathsf{m}
eq \mathsf{n}$

Variants of this definition can be found in the literature.

SOLVABILITY OF THE POISSON EQ-ON IMPLIES MARTINGAL -COBOUNDARY DECOMPOSITION

Let S_d denote the set of all subsets of $\{1, \ldots, d\}$.

Proposition

Let for some $1 \le p \le \infty$ and $f, g \in L_p$ $f = (\prod_{k=1}^{d} (I - U_k^*))g$. Then *f* can be represented in the form

$$f = \sum_{S \in \mathcal{S}_d} \left(\prod_{k \in S} (U_k - I) \prod_{l \notin S} (I - U_l U_l^*) \right) h_S,$$
(5)

where for every $S \in S_d$ the function $h_S \in L_p$ is defined by

$$h_{S} = \left(\prod_{m \in S} U_{m}^{*}\right)g.$$
(6)

POTENTIAL SERIES PRESENTS SOLUTION OF POISSON EQUATION

Let for some function *f* the **potential series**

n

$$\sum_{\mathbf{n}\in\mathbb{Z}_{+}^{d}}U^{*\mathbf{n}}f,\tag{7}$$

converges in the L_p -norm (or in \hat{L}_p norm), where summation is performed over coordinate rectangles with growing edges. Then its sum presents a solution of the Poisson equation.

CONVERGENCE AND CANONICITY

For a kernel *h* of degree *d* the following properties are equivalent:

$$E^{(n_1,\ldots,n_d)}h \xrightarrow[\max(n_1,\ldots,n_d)\to\infty]{} 0,$$

 $U^{*(n_1,\ldots,n_d)}h \xrightarrow[\max(n_1,\ldots,n_d)\to\infty]{} 0,$

and

$$E^{(n_1,\ldots,n_d)}h=0$$

whenever at least one of n_k equals ∞ . The latter property is means the canonicity of *h*.

Canonical kernels of degree d with convergent potential series form a dense subspace (among all canonical kernels of degree d).

□▶★□▶★□▶ □

EXAMPLE

Let $\Omega = \{z \in \mathbb{C} : |z| = 1\}$, *P* be the probability Haar measure on Ω , $Tz = z^2$, $z \in \Omega$, d = 2. Clearly,

$$(Uf)(x) = f(x^2), (U^*f)(x) = 1/2 \sum_{\{u:u^2=x\}} f(u).$$

If $f \in L_2(P)$ and $\int_{\Omega} f(x)P(dx) = 0$ then the series $\sum_{k\geq 0} U^{*k}f$ converges in L_2 under very mild conditions. The condition $\sum_{k\geq 0} w^{(2)}(f, 2^{-k}) < \infty$ is sufficient. Here $w^{(2)}(f, \delta)$ is the continuity modulus of f in $L_2(P)$.

・ロト ・四ト ・ヨト ・ヨト

EXAMPLE (CONTINUED 1)

Let now $f_2 \in L_2(\mu^2)$ be of the form

$$f_2(x_1, x_2) = g(x_1 x_2^{-1})$$

with

$$g(x) = \sum_{k \in \mathbb{Z}} g_k x^k \in L^2(\mu).$$

Assume that $f_2 \in \hat{L}^2_{sym}$ and is canonic. This implies

$$g_0=0,g_{-k}=g_k, ext{and}\sum_{k\in\mathbb{Z}}|g_k|<\infty.$$

< 日 > < 回 > < 回 > < 回 > < 回 > <

크

EXAMPLE (CONTINUED 2)

Let A_2 be the Banach space of double absolutely converging Fourier series

$$a: (x_1, x_2) \mapsto \sum_{(k_1, k_2) \in \mathbb{Z}^2} a_{k_1, k_2} x_1^{k_1} x_2^{k_2}$$

furnished with the norm $|\cdot|_{A_2} : a \mapsto \sum_{(k_1,k_2) \in \mathbb{Z}^2} |a_{k_1,k_2}|$. The projective tensor norm of the space $\hat{L}_{2,\pi} \cong I_2 \hat{\otimes}_{\pi} I_2$ does not exceed the norm of $A_2 \cong I_1 \hat{\otimes}_{\pi} I_1$. Hence, the series

$$\sum_{i_1,i_2)\in\mathbb{Z}^2_+} U^{*(i_1,i_2)} f_2 \tag{8}$$

converges in $\hat{L}_{2,\pi}(\mu^2)$ if it converges in A_2 .

EXAMPLE (CONTINUED 3)

Every $U^{*(i,j)}$ is a contraction in A_2 . Furthermore, $|U^{*(k,0)}f_2|_{A_2} = |U^{*(0,k)}f_2|_{A_2} = |U^{*k}g|_{A_1}$, where A_1 is the space of one-dimensional absolutely convergent trigonometric series $a: x \mapsto \sum_{k \in \mathbb{Z}} a_k x^k$ with the norm $|a|_{A_1} = \sum_{k \in \mathbb{Z}} |a_k|$. Thus we have $\sum |U^{*(k_1,k_2)}f_2|_{A_2}$ $(k_1, k_2) \in \mathbb{Z}^2_+$ $\leq \sum_{0 \leq k_1 \leq k_2 < \infty} |U^{*(k_1,k_2)}f_2|_{A_2} + \sum_{0 \leq k_2 \leq k_1 < \infty} |U^{*(k_1,k_2)}f_2|_{A_2}$ $= \sum (k+1) \left(|U^{*(k,0)}f_2|_{A_2} + |U^{*(0,k)}f_2|_{A_2} \right) \le 2 \sum (k+1) |U^{*k}g|_{A_1}$ k∈Z. (9)

EXAMPLE (CONTINUED 4)

Therefore, a sufficient condition for series (8) to converge in $\hat{L}_{2,\pi}(\mu^2)$ is

$$\sum_{n\in\mathbb{Z}}\sum_{k\geq 0}(k+1)|g_{2^kn}|<\infty,$$

which holds, for example, whenever for some C > 0 and $\delta > 0$

$$|g_m| \leq rac{C}{|m|(\log|m|)^{1+\delta}}, \ m \in \mathbb{Z} \setminus \{0\}.$$

Mikhail Gordin FUNCTIONAL LIMIT THEOREMS

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・ ・

э

FCLT

Mikhail Gordin FUNCTIONAL LIMIT THEOREMS

< 日 > < 回 > < 回 > < 回 > < 回 > <

MARTINGALE-COBOUNDARY DECOMPOSITION OF A CANONICAL KERNEL

Proposition

Let $h \in \hat{L}_2(P^2)$ be a canonical kernel of degree 2. Assume that the limit

$$\lim_{n_1, n_2 \to \infty} \sum_{0 \le i_1 \le n_1 - 1, 0 \le i_2 \le n_2 - 1} U^{*(i_1, i_2)} h$$
(10)

exists in $\hat{L}_2(P^2)$. Then h admits a unique representation in the form

$$\begin{split} h &= g + (U^{(1,0)} - I)g_1 + (U^{(0,1)} - I)g_2 + (U^{(1,0)} - I)(U^{(0,1)} - I)g_{1,2}, \\ \text{where } g \in \hat{L}^2(P^2), \, g_1, g_2, g_{1,2} \in \hat{L}^2(P^2) \text{ and} \\ E(g|T^{-(1,0)}\mathcal{F}^2) &= 0, \, E(g|T^{-(0,1)}\mathcal{F}^2) = 0, \\ E(g_1|T^{-(1,0)}\mathcal{F}^2) &= 0, \, E(g_2|T^{-(0,1)}\mathcal{F}^2) = 0. \\ \text{Moreover, if } h \text{ is a symmetric function, so is } g. \end{split}$$

Assume d = 2. Holds for every $d \ge 1$.

Theorem

Let $f\in \hat{L}_2(P^2)$ be a symmetric kernel with Hoeffding's decomposition

$$f(x_1, x_2) = f_0 + f_1(x_1) + f_1(x_2) + f_2(x_1, x_2),$$

where

$$\int_X f_1(z)p(dz)=0,$$

 $f_2 \in L^p_{sym}(\mu^2)$ and

$$\int_X f_2(z_1,x_2)\mu(dz_1)=0.$$

< 日 > < 回 > < 回 > < 回 > < 回 > <

æ

Assume that the series $\sum_{k=0}^{\infty} U^{*k} f_1 = g_1$ converges in L_2 and the limit

$$\lim_{N_1,N_2\to\infty}\sum_{(n_1,n_2)=\mathbf{0}}^{(N_1-1,N_2-1)}U^{(n_1,n_2)}f_2$$

exists in $\hat{L}_2(P^2)$. Then the distributions of random variables

$$t\mapsto N^{-3/2}\sum_{n_1,n_2=0}^{[Nt]}(f(T^{n_1};T^{n_2}\dot{)}-f_0),t\in[0,1]$$

weakly converge to the distribution of $2\sigma_f^2 w(\dot{)}$, where *w* is the standard Brownian motion and

$$\sigma_f^2 = |g|_2^2 - |U^*g|_2^2.$$

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

æ

MAXIMAL INEQUALITY

Lemma

There exists an absolute constant C such that

$$\left|\max_{0 \le n_1 \le N_1 - 1, 0 \le n_2 \le N_2} D_2 \sum_{(n_1, n_2) = \mathbf{0}}^{(N_1 - 1, N_2 - 1)} U^{(n_1, n_2)} f_2\right|_1 \le C |f_2|_{2,\pi} \sqrt{N_1 N_2}$$
(11)

・ロト ・四ト ・ヨト ・ヨト

E 990

> H. Dehling, M. Dehling, M. Gordin. Some limit theorems for von Mises statistics of a measure preserving transformation. Paper in preparation.

M. Gordin.

Martingale-coboundary representation for a class of random fields.

Journal of Mathematical Sciences, New York, 163, 4, 363 – 374: 2009.

「同ト・ヨト・ヨト

э