Nonparametric methods for dependent data: the example of the Stochastic Volatility model.

Fabienne Comte ${ }^{(1)}$
Joint works with C. Lacour ${ }^{(2)}$, V. Genon-Catalot ${ }^{(1)}$ and Y. Rozenholc ${ }^{(1)}$.
(1) MAP5, UMR 8145, Université Paris Descartes.
${ }^{(2)}$ Laboratoire de Probabilités et Statistique, Université Paris Sud-Orsay.

Continuous time model

$$
\left\{\begin{array}{l}
d \log \left(S_{t}\right)=\sqrt{V_{t}} d W_{t} \\
d V_{t}=b_{c}\left(V_{t}\right) d t+\sigma_{c}\left(V_{t}\right) d B_{t}
\end{array}\right.
$$

where $\left(W_{t}, B_{t}\right)$ is a 2-dim standard Brownian Motion, and V_{t} is a positive diffusion process.

Observations: $\left(Z_{i \delta}\right)_{1 \leq i \leq n}$ for $Z_{t}=\log \left(S_{t}\right)$ and $k \delta=\Delta, n=k N$.
Assumptions: Diffusion in stationary regime.
but non independent underlying sequence \Rightarrow geometrically
β-mixing r.v.'s

Aim: Estimate b_{c} (and σ_{c}^{2}), without observing V but only $Z_{t}=\log \left(S_{t}\right)$ and provide risk bounds.

Ideas of the estimation strategy:

1) The realized quadratic variation associated with
$\left(Z_{\ell \delta}\right)_{i k+1 \leq \ell<(i+1) k}$:

$$
\hat{\bar{V}}_{i}=\frac{1}{k \delta} \sum_{j=0}^{k-1}\left(Z_{(i k+j+1) \delta}-Z_{(i k+j) \delta}\right)^{2} .
$$

provides an approximation of the integrated volatility ($\Delta=k \delta$)

$$
\begin{equation*}
\bar{V}_{i}=\frac{1}{\Delta} \int_{i \Delta}^{(i+1) \Delta} V_{s} d s . \tag{1}
\end{equation*}
$$

2) If one observes $\left(Y_{i}, X_{i}\right)$ with $\mathbf{Y}_{\mathbf{i}}=\mathbf{f}\left(\mathbf{X}_{\mathbf{i}}\right)+\varepsilon_{\mathbf{i}}$ where $\varepsilon_{i}=$ noise, then nonparametric mean square contrasts \rightarrow good estimation of f.

Find the regression equation.

Suppose we observe directly the ($V_{i \Delta}$), then, we can write:

$$
\begin{aligned}
& \frac{V_{(i+1) \Delta}-V_{i \Delta}}{\Delta}=\frac{1}{\Delta} \int_{i \Delta}^{(i+1) \Delta} d V_{s}=\frac{1}{\Delta} \int_{i \Delta}^{(i+1) \Delta} b_{c}\left(V_{s}\right) d s+\frac{1}{\Delta} \int_{i \Delta}^{(i+1) \Delta} \sigma_{c}\left(V_{s}\right) d W_{s} \\
& =\mathbf{b}_{\mathbf{c}}\left(\mathbf{V}_{\mathbf{i} \Delta}\right)+\underbrace{\frac{1}{\Delta} \int_{i \Delta}^{(i+1) \Delta} \sigma_{c}\left(V_{s}\right) d W_{s}}_{\text {noise }}+\underbrace{\frac{1}{\Delta} \int_{i \Delta}^{(i+1) \Delta}\left[b_{c}\left(V_{s}\right)-b_{c}\left(V_{i \Delta}\right)\right] d s}_{\text {Residual term }}
\end{aligned}
$$

This regression of the $\frac{V_{(i+1) \Delta}-V_{i \Delta}}{\Delta}$ on the $V_{i \Delta}$ allows to estimate b_{c} (see Comte et al. (2007)).

Mixing sequences - Martingale properties $-\Delta, \delta$ small.

Suppose we observe the $\left(\bar{V}_{i}\right)$

$$
\bar{V}_{i}=\frac{1}{\Delta} \int_{i \Delta}^{(i+1) \Delta} V_{s} d s
$$

then, we can write

$$
\begin{aligned}
\overline{\mathbf{V}}_{\mathbf{i}} & =\frac{1}{\Delta} \int_{i \Delta}^{(i+1) \Delta} V_{s} d s=\frac{1}{\Delta} \int_{i \Delta}^{(i+1) \Delta}\left(V_{i \Delta}+\int_{i \Delta}^{s} d V_{u}\right) d s \\
& =\mathbf{V}_{i \Delta}+\frac{1}{\Delta} \int_{i \Delta}^{(i+1) \Delta}[(i+1) \Delta-u] d V_{u}
\end{aligned}
$$

So we have

$$
\begin{aligned}
\frac{\overline{\mathbf{V}}_{\mathbf{i}+\mathbf{1}}-\overline{\mathbf{V}}_{\mathbf{i}}}{\boldsymbol{\Delta}}=\frac{\mathbf{V}_{(\mathbf{i}+\mathbf{1}) \Delta}-\mathbf{V}_{\mathbf{i} \Delta}}{\Delta}+ & \frac{1}{\Delta^{2}}
\end{aligned} \begin{aligned}
& {\left[\int_{(i+1) \Delta}^{(i+2) \Delta}((i+2) \Delta-u) d V_{u}\right.} \\
& \left.+\int_{i \Delta}^{(i+1) \Delta}(u-(i+1) \Delta) d V_{u}\right]
\end{aligned}
$$

$$
\psi_{i \Delta}(u)=(u-i \Delta) \mathbf{I}_{[i \Delta,(i+1) \Delta[}(u)+[(i+2) \Delta-u] \mathbb{I}_{[(i+1) \Delta,(i+2) \Delta[}(u)
$$

$$
\begin{aligned}
\frac{\overline{\mathbf{V}}_{\mathbf{i}+\mathbf{1}}-\overline{\mathbf{V}}_{\mathbf{i}}}{\boldsymbol{\Delta}}=\mathbf{b}\left(\mathbf{V}_{\mathbf{i} \Delta}\right) & +\underbrace{\frac{1}{\Delta^{2}} \int_{i \Delta}^{(i+2) \Delta} \psi_{i \Delta}(u) \sigma_{c}\left(V_{u}\right) d W_{u}}_{\text {noise }} \\
& +\underbrace{\frac{1}{\Delta^{2}} \int_{i \Delta}^{(i+2) \Delta} \psi_{i \Delta}(u)\left[b_{c}\left(V_{u}\right)-b_{c}\left(V_{i \Delta}\right)\right] d u}_{\text {residual }} .
\end{aligned}
$$

Recall now

$$
\hat{\bar{V}}_{i}=\frac{1}{k \delta} \sum_{j=0}^{k-1}\left(Z_{(i k+j+1) \delta}-Z_{(i k+j) \delta}\right)^{2}
$$

is an approximation of $\bar{V}_{i}(\Delta=k \delta)$.

Last step: quadratic variations ($\hat{\bar{V}}_{i}$) built using our effective observations $(k \delta=\Delta)$:

$$
\hat{\bar{V}}_{i}=\bar{V}_{i}+u_{i, k}
$$

where

$$
u_{i, k}=\frac{1}{\Delta} \sum_{j=0}^{k-1}\left[\left(\int_{(i k+j) \delta}^{(i k+j+1) \delta} \sqrt{V_{s}} d B_{s}\right)^{2}-\int_{(i k+j) \delta}^{(i k+j+1) \delta} V_{s} d s\right]
$$

This yields

$$
\mathbf{H}_{\mathbf{i}}=\frac{\hat{\overline{\mathrm{V}}}_{\mathbf{i}+1}-\hat{\overline{\mathrm{V}}}_{\mathbf{i}}}{\Delta}=\frac{\bar{V}_{i+1}-\bar{V}_{i}}{\Delta}+\frac{u_{i+1, k}-u_{i, k}}{\Delta}
$$

Finally, we obtain the development,

$$
\begin{equation*}
\mathbf{H}_{\mathbf{i}+\mathbf{1}}=\mathbf{b}_{\mathbf{c}}\left(\hat{\overline{\mathbf{V}}}_{\mathbf{i}}\right)+\mathbf{Z}_{\mathbf{i}+\mathbf{1}}+\mathbf{R}(\mathbf{i}+\mathbf{1}) \tag{2}
\end{equation*}
$$

where Z_{i+1} is a noise term (with martingale properties):

$$
Z_{i+1}=\frac{1}{\Delta^{2}} \int_{(i+1) \Delta}^{(i+3) \Delta} \psi_{(i+1) \Delta}(u) \sigma_{c}\left(V_{u}\right) d W_{u}+\left(u_{i+2, k}-u_{i+1, k}\right) / \Delta
$$

and $R(i+1)$ is a sum of negligible residual terms given by

$$
R(i+1)=\left[b_{c}\left(V_{(i+1) \Delta}\right)-b_{c}(\hat{\bar{V}} i)\right]+\frac{1}{\Delta^{2}} \int_{(i+1) \Delta}^{(i+3) \Delta} \psi_{(i+1) \Delta}(s)\left(b_{c}\left(V_{s}\right)-b_{c}\left(V_{(i+1) \Delta}\right)\right) d s
$$

The lag in (2) is to avoid some cumbersome correlations.

Spaces of approximation

b_{c} is estimated only on a compact subset A of the state space of $\left(V_{t}\right)$. For simplicity

$$
\begin{equation*}
A=[0,1], \text { and we set } b_{A}=b_{c} 1_{A} \tag{3}
\end{equation*}
$$

Estimation strategy (model selection):

1) Take a family $S_{m}, m \in \mathcal{M}_{n}$ of finite dim. subspaces of $\mathbb{L}_{2}([0,1])$
2) Compute a collection of estimators \hat{b}_{m} where for all $m, \hat{b}_{m} \in S_{m}$.
3) Data driven procedure chooses among the collection of estimators the final estimator $\hat{b}_{\hat{m}}$.

Here: Trigonometric spaces, $S_{m}, m \in \mathcal{M}_{n}$.
$S_{m}=\operatorname{Span}\left(\varphi_{1}, \ldots, \varphi_{2 m+1}\right) \subset \mathbb{L}_{2}([0,1])$ with
$\varphi_{1}(x)=1_{[0,1]}(x)$,
$\varphi_{j}(x)=\sqrt{2} \cos (2 \pi \mathbf{j} \mathbf{x}) 1_{[0,1]}(x)$ for even j 's
$\varphi_{j}(x)=\sqrt{2} \sin (2 \pi \mathbf{j x}) 1_{[0,1]}(x)$ for odd j 's, $j>1$.
Dimension $D_{m}=2 m+1=\operatorname{dim}\left(S_{m}\right) \leq \mathcal{D}_{n}$ and

$$
\mathcal{M}_{n}=\left\{1,3, \ldots, \mathcal{D}_{n}\right\} .
$$

Largest space in the collection has maximal dimension \mathcal{D}_{n}.
For all $x \in[0,1], \sum_{j=1}^{2 m+1} \varphi_{j}^{2}(x)=2 m+1=D_{m}$.
Thus, for any function $t \in S_{m}, \sup _{x \in[0,1]}|t(x)|^{2} \leq D_{m} \int_{0}^{1} t^{2}(x) d x$.

For each m, and for a function $t \in S_{m}$, we introduce the following contrast:

$$
\begin{equation*}
\gamma_{\mathbf{N}}(\mathbf{t})=\frac{1}{\mathbf{N}} \sum_{\mathbf{i}=\mathbf{0}}^{\mathbf{N}-\mathbf{1}}\left[\mathbf{H}_{\mathbf{i}+1}-\mathbf{t}\left(\hat{\overline{\mathbf{V}}}_{\mathbf{i}}\right)\right]^{2} . \tag{4}
\end{equation*}
$$

Then the mean squares estimators are defined as

$$
\begin{gather*}
\hat{\mathbf{b}}_{\mathbf{m}}=\arg \min _{\mathbf{t} \in \mathbf{S}_{\mathbf{m}}} \gamma_{\mathbf{N}}(\mathbf{t}) \tag{5}\\
\hat{\bar{V}}_{i}=\frac{1}{k \delta} \sum_{j=0}^{k-1}\left(Z_{(i k+j+1) \delta}-Z_{(i k+j) \delta}\right)^{2}, H_{i}=\frac{\hat{\bar{V}}_{i+1}-\hat{\bar{V}}_{i}}{\Delta} . \\
\text { Observations } Z_{\ell \delta} \text { from }\left\{\begin{array}{l}
d Z_{t}=d \log \left(S_{t}\right)=\sqrt{V_{t}} d W_{t} \\
d V_{t}=b_{c}\left(V_{t}\right) d t+\sigma_{c}\left(V_{t}\right) d B_{t}
\end{array}\right.
\end{gather*}
$$

Well defined, the vector: $\left(\hat{b}_{m}\left(\hat{\bar{V}}_{1}\right), \ldots, b_{m}\left(\hat{\bar{V}}_{N}\right)\right)$ and

$$
\mathbb{E}\left[\frac{1}{N} \sum_{i=0}^{N-1}\left(\hat{b}_{m}\left(\hat{\bar{V}}_{i}\right)-b_{A}\left(\hat{\bar{V}}_{i}\right)\right)^{2}\right] .
$$

Thus, the error is measured via the risk $\mathbb{E}\left(\left\|\hat{b}_{m}-b_{A}\right\|_{N}^{2}\right)$ where

$$
\begin{equation*}
\|t\|_{N}^{2}=\frac{1}{N} \sum_{i=0}^{N-1} t^{2}\left(\hat{\bar{V}}_{i}\right) . \tag{6}
\end{equation*}
$$

Assumptions.

Assume that the state space of $\left(V_{t}\right)$ is a known open interval $\left(r_{0}, r_{1}\right)$ of $\mathbb{R}^{+}, I=\left[r_{0}, r_{1}\right] \cap \mathbb{R}$ and
[A1] $0 \leq r_{0}<r_{1} \leq+\infty, \stackrel{\circ}{I}=\left(r_{0}, r_{1}\right)$, with $\sigma_{\mathbf{c}}(\mathbf{v})>0$, for all $v \in \stackrel{\circ}{I}$. $b_{c} \in C^{1}(I), b_{c}^{\prime}$ bounded on I, $\sigma_{c}^{2} \in C^{2}(I),\left(\sigma_{c}^{2}\right)^{\prime} \sigma$ Lipschitz on $I,\left(\sigma_{c}^{2}\right)^{\prime \prime}$ bounded on I and $\sigma_{c}^{2}(v) \leq \sigma_{1}^{2}, \forall v \in I$.
[A2] $\forall v_{0}, v \in \stackrel{\circ}{I}$, scale density $s(v)=\exp \left[-2 \int_{v_{0}}^{v} b_{c}(u) / \sigma_{c}^{2}(u) d u\right]$ satisfies $\int_{r_{0}} s(x) d x=+\infty=\int^{r_{1}} s(x) d x$; speed density $m(v)=1 /\left(\sigma_{c}^{2}(v) s(v)\right)$ satisfies $\int_{r_{0}}^{r_{1}} m(v) d v=M<+\infty$.
[A3] $\eta \sim \pi, \forall i, \mathbb{E}\left(\eta^{i}\right)<\infty$, where $\pi(v) d v=(m(v) / M) \mathbb{I}_{\left(r_{0}, r_{1}\right)}(v) d v$.
Under [A1]-[A3], $\left(V_{t}\right)$ is strictly stationary with marginal distribution π, ergodic and β-mixing, i.e. $\lim _{t \rightarrow+\infty} \beta_{V}(t)=0$.

To prove our main result, we need the following stronger mixing condition:
[A4] The process $\left(V_{t}\right)$ is exponentially β-mixing, i.e., there exist constants $K>0, \theta>0$, such that, for all $t \geq 0, \beta_{V}(t) \leq K e^{-\theta t}$.
[A4] satisfied in most standard examples.

Under [A1]-[A4], for fixed $\Delta,\left(\bar{V}_{i}\right)_{i \geq 0}$ is a strictly stationary process. And we have:

Proposition 1 Under [A1]-[A4], for fixed k and $\delta,\left(\hat{\bar{V}}_{i}\right)_{i \geq 0}$ is
strictly stationary and $\beta_{\hat{\mathbf{V}}}(\mathbf{i}) \leq \mathbf{c} \beta_{\mathbf{V}}(\mathbf{i} \Delta)$ for all $i \geq 1$.
[A5] The process $\left(\hat{\bar{V}}_{i}\right)_{i \geq 0}$ admits a stationary density π^{*} and there exist two positive constants π_{0}^{*} and π_{1}^{*} (independent of $n, \delta)$ such that $\forall m \in \mathcal{M}_{n}, \forall t \in S_{m}$,

$$
\begin{equation*}
\pi_{0}^{*}\|t\|^{2} \leq \mathbb{E}\left(t^{2}\left(\hat{\bar{V}}_{0}\right)\right) \leq \pi_{1}^{*}\|t\|^{2} \tag{7}
\end{equation*}
$$

The existence of the density π^{*} is easy to obtain.
The checking of (7) is more technical.

$$
\|t\|_{\pi^{*}}^{2}=\int t^{2}(x) \pi^{*}(x) d x, \quad\|t\|^{2}=\int_{0}^{1} t^{2}(x) d x \quad \text { and } \quad\|t\|_{\infty}=\sup _{x \in[0,1]}|t(x)| .
$$

For a deterministic function $\mathbb{E}\left(\|\mathbf{t}\|_{\mathbf{N}}^{\mathbf{2}}\right)=\|\mathbf{t}\|_{\pi^{*}}^{\mathbf{2}}=\int \mathbf{t}^{\mathbf{2}}(\mathbf{x}) \pi^{*}(\mathbf{x}) \mathbf{d x}$.
Under [A5], norms $\|$.$\| and \|\cdot\|_{\pi^{*}}$ are equivalent for functions in S_{m}

Proposition 2 Assume that $N \Delta \geq 1$ and $1 / k \leq \Delta$. Assume that [A1]-[A5] hold and consider a model S_{m} in the collection of models with $\mathcal{D}_{n} \leq O(\sqrt{N \Delta} / \ln (N))$ where \mathcal{D}_{n} is the maximal dimension. Then the estimator \hat{b}_{m} of b is such that

$$
\mathbb{E}\left(\left\|\hat{\mathbf{b}}_{\mathrm{m}}-\mathbf{b}_{\mathrm{A}}\right\|_{\mathrm{N}}^{2}\right) \leq 7\left\|\mathrm{~b}_{\mathrm{m}}-\mathrm{b}_{\mathrm{A}}\right\|_{\pi^{*}}^{2}+\mathbf{K} \frac{\mathbb{E}\left(\sigma^{2}\left(\mathbf{V}_{0}\right)\right) \mathbf{D}_{\mathrm{m}}}{\mathbf{N} \Delta}+\mathbf{K}^{\prime} \Delta
$$

where $b_{A}=b \mathbb{I}_{[0,1]}$, b_{m} is the orthogonal projection of b on S_{m} and K and K^{\prime} are some positive constants.

Note that the condition on \mathcal{D}_{n} implies that $\sqrt{N \Delta} / \ln (N)$ must be large enough.

Rates.

If $b_{A} \in \mathcal{B}_{\alpha, 2, \infty}([0,1]), \alpha \geq 1$, and $\left\|b_{A}\right\|_{\alpha, 2, \infty} \leq L$.
and $\left\|b_{m}-b_{A}\right\|_{\pi^{*}}^{2} \leq \pi_{1}^{*}\left\|b_{m}-b_{A}\right\|^{2}$
Choose $D_{m}=\left(N_{n} \Delta_{n}\right)^{1 /(2 \alpha+1)}$, we obtain

$$
\mathbb{E}\left(\left\|\hat{\mathrm{b}}_{\mathrm{m}}-\mathbf{b}_{\mathbf{A}}\right\|_{\mathrm{n}}^{2}\right) \leq \mathbf{C}\left(\alpha, \mathbf{L}, \pi_{1}^{*}\right)\left(\mathbf{N}_{\mathrm{n}} \Delta_{\mathrm{n}}\right)^{-2 \alpha /(2 \alpha+1)}+\mathbf{K}^{\prime} \boldsymbol{\Delta}_{\mathrm{n}} .
$$

$$
\begin{aligned}
\left(N_{n} \Delta_{n}\right)^{-2 \alpha /(2 \alpha+1)}= & T_{n}^{-2 \alpha /(2 \alpha+1)} \\
= & \text { the optimal nonparametric rate proved by } \\
& \text { Hoffmann (1999) for direct observations of } V .
\end{aligned}
$$

Second term: study of cases in which it is negligible.

Model selection

$$
\begin{equation*}
\hat{m}=\arg \min _{m \in \mathcal{M}_{n}}\left[\gamma_{n}\left(\hat{b}_{m}\right)+\operatorname{pen}(m)\right] \tag{8}
\end{equation*}
$$

with $\operatorname{pen}(m)$ a penalty to be properly chosen. We denote by $\tilde{b}=\hat{b}_{\hat{m}}$ the resulting estimator and we need to determine pen such that, ideally,
$\mathbb{E}\left(\left\|\tilde{b}-b_{A}\right\|_{N}^{2}\right) \leq C \inf _{m \in \mathcal{M}_{n}}\left(\left\|b_{A}-b_{m}\right\|^{2}+\frac{\mathbb{E}\left(\sigma^{2}\left(V_{0}\right)\right) D_{m}}{N \Delta}\right)+$ negligible terms,
with C a constant which should not be too large.

We almost reach this aim for the estimation of b.

Theorem 1 Assume that [A1]-[A5] hold, $1 / k \leq \Delta, \Delta \leq 1$ and
$N \Delta \geq 1$. Consider the collection of models with maximal dimension $\mathcal{D}_{n} \leq O(\sqrt{N \Delta} / \ln (N))$. Then the estimator \tilde{b} of b where \hat{m} is defined by (8) with

$$
\begin{equation*}
\operatorname{pen}(\mathbf{m}) \geq \kappa \sigma_{1}^{2} \frac{\mathbf{D}_{\mathbf{m}}}{\mathbf{N} \boldsymbol{\Delta}} \tag{9}
\end{equation*}
$$

where κ is a universal constant, is such that

$$
\begin{aligned}
& \mathbb{E}\left(\left\|\tilde{b}-b_{A}\right\|_{N}^{2}\right) \leq C \inf _{m \in \mathcal{M}_{n}}\left(\left\|b_{m}-b_{A}\right\|_{\pi^{*}}^{2}+\operatorname{pen}(m)\right) \\
&+K\left(\Delta+\frac{1}{N \Delta}+\frac{1}{\ln ^{2}(N) k \Delta}\right)
\end{aligned}
$$

Proof relies on the following Bernstein-type Inequality:

Lemma 1 Under the assumptions of Theorem 1, for any positive numbers ϵ and v, we have

$$
\mathbb{P}\left[\sum_{i=0}^{N-1} t\left(\hat{\bar{V}}_{i}\right) Z_{(i+1) \Delta}^{(1)} \geq N \epsilon,\|t\|_{N}^{2} \leq v^{2}\right] \leq \exp \left(-\frac{N \Delta \epsilon^{2}}{2 \sigma_{1}^{2} v^{2}}\right) .
$$

W is a Brownian motion with respect to the augmented filtration $\mathcal{F}_{s}=\sigma\left(\left(B_{u}, W_{u}\right), u \leq s, \eta\right)$.

Conclusion about technicalities associated with dependency:

1) Assumptions on the diffusion to ensure stationarity, mixing...
2) Martingale properties give the control of the centered empirical process: no loss due to mixing in the penalty.
3) Coupling and variance inequality for equivalence of empirical and theoretical norms and for residual terms.

Discrete time version

(with fixed sample step, set to 1) of the stochastic volatility model.

$$
\left\{\begin{array}{l}
Y_{i}=\exp \left(X_{i} / 2\right) \eta_{i} \tag{10}\\
X_{i+1}=b\left(X_{i}\right)+\sigma\left(X_{i}\right) \xi_{i+1}
\end{array}\right.
$$

$\left(\eta_{i}\right)$ and $\left(\xi_{i}\right)$ independent sequences of i.i.d. r.v.'s (noise processes).

Only Y_{1}, \ldots, Y_{n} are observed,
while process of interest is $U_{i}=\exp \left(X_{i} / 2\right)$, and in particular the functions $b($.$) and \sigma($.$) .$

For $Y_{i}=\log \left(S_{i+1} / S_{i}\right)$:

$$
\mathbf{Y}_{\mathbf{i}} \sim_{\mathcal{L}} \mathbf{U}_{\mathbf{i}} \eta_{\mathbf{i}}
$$

$$
U_{i}=\left(\int_{i}^{i+1} V_{s} d s\right)^{1 / 2} \text { and } \eta_{i} \text { i.i.d. } \mathcal{N}(0,1)
$$

\Rightarrow first equation of the continuous time model
$=$ first equation of (10) (exact discretization in distrib.) with specific Gaussian distribution for η.
\Rightarrow Tools for estimating the common density of the U_{i} 's common to both models.

But the second equations of both models: same idea of a time dynamics, but do not coincide.

Transformation into an Error-in-variables model.

$$
\left\{\begin{array}{l}
Z_{i}=X_{i}+\varepsilon_{i} \tag{11}\\
X_{i+1}=b\left(X_{i}\right)+\sigma\left(X_{i}\right) \xi_{i+1}
\end{array}\right.
$$

where

$$
\left\{\begin{array}{l}
\varepsilon_{i}=\ln \left(\eta_{i}^{2}\right)-\mathbb{E}\left(\ln \left(\eta_{i}^{2}\right)\right) \\
Z_{i}=\ln \left(Y_{i}^{2}\right)-\mathbb{E}\left(\ln \left(\eta_{i}^{2}\right)\right)
\end{array}\right.
$$

Here $\mathbb{E}\left(\ln \left(\eta_{i}^{2}\right)\right)$ known $+(\eta)$ and (ξ) are independent.
\log of $Y_{i}^{2} \Rightarrow \operatorname{sign}$ of Y_{i} can not be recovered.
Observations: $\left(Z_{i}\right)_{1 \leq i \leq n}$ 。

Quotient strategy for estimation:

$$
\ell=b f, \quad \hat{b}=\frac{\hat{\ell}}{\hat{f}} .
$$

Density estimation for $f+$ estimation of ℓ
in a convolution model - an error in variable model
Why do mixing problems vanish from important terms (for the rates).

What is the benchmark?

Projection estimator for density of X_{1} when the process is observed,

$$
\hat{f}_{m}=\sum_{j} \hat{a}_{j} \varphi_{j}, \quad \hat{a}_{j}=\frac{1}{n} \sum_{i=1}^{n} \varphi_{j}\left(X_{i}\right)
$$

where φ_{j} is e.g. still the trigonometric basis.

$$
\mathbb{E}\left(\hat{f}_{m}\right)=f_{m}=\sum_{j} a_{j} \varphi_{j}, \quad a_{j}=\left\langle f, \varphi_{j}\right\rangle
$$

Then

$$
\mathbb{E}\left(\left\|\hat{f}_{m}-f_{A}\right\|^{2}\right)=\left\|f-f_{m}\right\|^{2}+\mathbb{E}\left(\left\|f_{m}-\hat{f}_{m}\right\|^{2}\right)
$$

and

$$
\mathbb{E}\left(\left\|f_{m}-\hat{f}_{m}\right\|^{2}\right)=\mathbb{E}\left(\sum_{j}\left(\hat{a}_{j}-a_{j}\right)^{2}\right)=\sum_{\mathbf{j}} \operatorname{Var}\left(\frac{\mathbf{1}}{\mathbf{n}} \sum_{\mathbf{i}=\mathbf{1}}^{\mathbf{n}} \varphi_{\mathbf{j}}\left(\mathbf{X}_{\mathbf{i}}\right)\right)
$$

β-mixing variance inequality:

$$
\operatorname{Var}\left(\frac{1}{n} \sum_{i=1}^{n} \varphi_{j}\left(X_{i}\right)\right) \leq \frac{4}{n} \int \varphi_{j}^{2}(x) b(x) d \mathbb{P}(x)
$$

with

$$
\sum_{j} \varphi_{j}^{2}=2 m+1, \quad \quad \int b(x) d \mathbb{P}(x) \leq \sum_{k} \beta_{k}
$$

and

$$
\sum_{j} \operatorname{Var}\left(\frac{1}{n} \sum_{i=1}^{n} \varphi_{j}\left(X_{i}\right)\right) \leq \sum_{\mathrm{k}} \beta_{\mathrm{k}} \frac{D_{m}}{n}
$$

This explains why $\operatorname{pen}(m)=\kappa \sum_{\mathrm{k}} \beta_{\mathrm{k}} \frac{D_{m}}{n}$
Lot of works on the subject (Lerasle (2009), Gannaz and Wintenberger (2010)).

Now for $Z_{i}=X_{i}+\varepsilon_{i}, f_{Z}=f \star f_{\varepsilon}$ (convolution).

$$
\begin{aligned}
& f_{Z}^{*}=f^{*} f_{\varepsilon}^{*} \text { where } g^{*}(u)= \int e^{i x u} g(x) d x \\
& f^{*}=f_{Z}^{*} / f_{\varepsilon}^{*} \Rightarrow \hat{\mathbf{f}}^{*}(\mathbf{u})=\frac{\frac{\mathbf{1}}{\mathbf{n}} \sum_{\mathbf{k}=\mathbf{1}}^{\mathbf{n}} \mathbf{e}^{\mathbf{i} \mathbf{u Z _ { \mathbf { k } }}}}{\mathbf{f}_{\varepsilon}^{*}(\mathbf{u})} \\
& \hat{f}_{m}(x)= \frac{1}{2 \pi} \int_{-\pi m}^{\pi m} e^{-i u x} \hat{f}^{*}(u) d u
\end{aligned}
$$

Fourier inversion with cutoff, for integrability.
Bias measured w.r.t. $f_{m}(x)=\frac{1}{2 \pi} \int_{-\pi m}^{\pi m} e^{-i u x} f^{*}(u) d u$

Mean squared error:

$$
\mathbb{E}\left(\left\|\hat{\mathbf{f}}_{\mathbf{m}}-\mathbf{f}\right\|^{\mathbf{2}}\right)=\left\|\mathbf{f}-\mathbf{f}_{\mathbf{m}}\right\|^{\mathbf{2}}+\mathbb{E}\left(\left\|\mathbf{f}_{\mathbf{m}}-\hat{\mathbf{f}}_{\mathbf{m}}\right\|^{\mathbf{2}}\right)
$$

Squared bias $\left\|f-f_{m}\right\|^{2}=\int_{|u| \geq \pi m}\left|f^{*}(u)\right|^{2} d u$
Variance term

$$
\begin{aligned}
\mathbb{E}\left(\left\|f_{m}-\hat{f}_{m}\right\|^{2}\right) & =\operatorname{Var}\left(\frac{1}{n} \sum_{k=1}^{n} \int_{-\pi m}^{\pi m} \frac{e^{i u Z_{k}}}{f_{\varepsilon}^{*}(u)} d u\right) \\
& =\frac{1}{n^{2}} \sum_{k, \ell=1}^{n} \int_{-\pi m}^{\pi m} \int_{-\pi m}^{\pi m} \frac{\operatorname{cov}\left(\mathbf{e}^{\mathbf{i u Z k}}, \mathbf{e}^{\mathrm{iv} \mathbf{Z}_{\ell}}\right)}{f_{\varepsilon}^{*}(u) f_{\varepsilon}^{*}(-v)} d u
\end{aligned}
$$

For $k \neq \ell$

$$
\begin{aligned}
\operatorname{cov}\left(e^{i u Z k}, e^{i v Z_{\ell}}\right) & =\mathbb{E}\left(e^{i\left(u X_{k}-v X_{\ell}\right)+i\left(u \varepsilon_{k}-v \varepsilon_{\ell}\right)}\right)-\mathbb{E}\left(e^{i u\left(X_{k}+\varepsilon_{k}\right)}\right) \mathbb{E}\left(e^{-i v\left(X_{\ell}+\varepsilon_{\ell}\right)}\right) \\
& =\operatorname{cov}\left(\mathbf{e}^{\mathbf{i} \mathbf{u} \mathbf{X}}, \mathbf{e}^{\mathbf{i v} \mathbf{X}_{\ell}}\right) \mathbf{f}_{\varepsilon}^{*}(\mathbf{u}) \mathbf{f}_{\varepsilon}^{*}(-\mathbf{v})
\end{aligned}
$$

This yields
$\mathbb{E}\left(\left\|f_{m}-\hat{f}_{m}\right\|^{2}\right) \leq \underbrace{\frac{1}{n} \int_{-\pi m}^{\pi m} \frac{d u}{\left|f_{\varepsilon}^{*}(u)\right|^{2}}}_{\begin{array}{c}\text { usual deconvolution } \\ \text { variance bound }\end{array}}+\underbrace{\operatorname{Var}\left(\frac{1}{n} \sum_{k=1}^{n} \int_{-\pi m}^{\pi m} e^{i u X_{k}} d u\right)}_{\begin{array}{l}\text { standard variance } \\ \text { of a mixing process }\end{array}}$
If $\left|f_{\varepsilon}^{*}(u)\right| \sim C(1+|u|)^{-\gamma}$, main variance term $=O\left(\frac{m^{2 \gamma+1}}{n}\right)$.
Second variance term $=O\left(\frac{m}{n}\right)$ with mixing or independence \Rightarrow Negligible.
(see Comte, Dedecker, Taupin (2008)).

More generally

$$
\left|f_{\varepsilon}^{*}(u)\right| \sim c(1+|u|)^{-\gamma} \exp \left(-\mu|u|^{\delta}\right)
$$

Examples: Gaussian case $\left|f_{\varepsilon}^{*}(u)\right|=\exp \left(-u^{2} / 2\right), \gamma=0, \delta=2$.

Case $\log \left(\mathcal{N}(0,1)^{2}\right):\left|f_{\varepsilon}^{*}(u)\right| \sim \sqrt{2 / e} \exp (-\pi|u| / 2), \gamma=0, \delta=1$.
\Rightarrow Nonstandard variance orders,
\Rightarrow Nonstandard rates of convergence for well-chosen m.

Model (Cutoff) Selection.
$\operatorname{pen}(m)=\frac{\kappa}{n} m^{\omega} \int_{-\pi m}^{\pi m} \frac{d u}{\left|f_{\varepsilon}^{*}(u)\right|^{2}}$ where $\omega=\left\{\begin{array}{lll}0 & \text { if } & 0 \leq \delta<1 / 3 \\ \inf \left(\frac{3 \delta-1}{2}, \delta\right) & \text { if } & \delta>1 / 3\end{array}\right.$

$$
\hat{m}=\arg \min _{m}\left\{-\left\|\hat{f}_{m}\right\|^{2}+\operatorname{pen}(m)\right\}
$$

We get for β-mixing with coefficients of X such that $\beta_{k} \leq c k^{-(1+\theta)}$ with $\theta>3$, we get

$$
\mathbb{E}\left(\left\|\hat{f}_{\hat{m}}-f\right\|^{2}\right) \leq C \inf _{1 \leq m \leq m_{n}}\left(\left\|f-f_{m}\right\|^{2}+\operatorname{pen}(m)\right)+\frac{C}{n}
$$

where m_{n} must be cautiously bounded.
In term of the mixing study, much thinner results can be proved, not detailed here.

Now: Conditions are required for X to be β-mixing, in an autoregressive and heteroskedastic model. See e.g. Doukhan (1994).

For $\ell=b f$, same principle:

$$
\hat{\ell}_{m}=\frac{1}{2 \pi n} \sum_{k=1}^{n} Z_{k+1} \int_{-\pi m}^{\pi m} \frac{e^{-i u Z_{k}}}{f_{\varepsilon}^{*}(u)} d u
$$

New variance term $=\mathbb{E}\left(\mathbf{Z}_{1}^{2}\right) \frac{\int_{-\pi m}^{\pi m} \frac{d u}{\left|f_{\varepsilon}^{*}(u)\right|^{2}}}{n}$

Same orders as previously but unbounded \Rightarrow additional technical difficulties.
Moreover Z_{k+1} and $Z_{k} \Rightarrow$ two different indices, to split into odd/even terms.

$$
Z_{k+1}=X_{k+1}+\varepsilon_{k+1}=b\left(X_{k}\right)+\sigma\left(X_{k}\right) \xi_{k+1}+\varepsilon_{k+1}
$$

while $Z_{k}=X_{k}+\varepsilon_{k}$. Many results are obtained in two steps by conditioning by X.

Risk bound for one estimator holds for $\theta>1$.

$$
\operatorname{pen}_{\ell}(m)=\mathbb{E}\left(Z_{1}^{2}\right) \operatorname{pen}(m)
$$

and under much stronger mixing conditions $\theta>14,+$ moment conditions

$$
\begin{gathered}
\hat{m}_{\ell}=\arg \min _{m}\left(-\left\|\hat{\ell}_{m}\right\|^{2}+\operatorname{pen}_{\ell}(m)\right) \\
\mathbb{E}\left(\left\|\hat{\ell}_{\hat{m}_{\ell}}-\ell\right\|^{2}\right) \leq C \inf _{1 \leq m \leq m_{n}}\left(\left\|\ell-\ell_{m}\right\|^{2}+\operatorname{pen}_{\ell}(m)\right)+\frac{C}{n}
\end{gathered}
$$

References.

Part 1.

- "Nonparametric estimation for a stochastic volatility model", with V. Genon-Catalot and Y. Rozenholc. Finance and Stochastics 14, $\mathrm{n}^{\circ} 1,49-80,2010$.
- "Nonparametric adaptive estimation for integrated diffusions," with V. Genon-Catalot and Y. Rozenholc. Stochastic Processes and Their Applications 119, $\mathrm{n}^{\circ} 3,811-834,2009$.
- "Penalized nonparametric mean square estimation of the coefficients of diffusion processes," with V. Genon-Catalot and Y.
Rozenholc, Bernoulli 13, nº 2, 514-543, 2007.

Part 2.

- "Adaptive estimation of the dynamics of a discrete time stochastic volatility model", with C. Lacour and Y. Rozenholc. Journal of Econometrics 154, n ${ }^{\circ} 1,59-73,2010$.
- "Adaptive density deconvolution for dependent inputs with measurement errors", with J. Dedecker and M.-L. Taupin. Mathematical Methods of Statistics 17, n ${ }^{\circ}$ 2, 87-112, 2008.
- "Nonparametric estimation of the regression function in an errors-in-variables model", with M.-L. Taupin, Statistica Sinica 17, $\mathrm{n}^{\circ} 3,1065-1090,2007$.
- Berbee, H. (1979). Random walks with Stationary Increments and Renewal Theory. Mathematical Centre Tracts 112.
Amsterdam: Mathematisch Centrum.
- Dedecker, J. and Prieur, C. (2005). New dependence coefficients. Examples and applications to statistics. Probab. Theory Relat. Fields 132 (2), 203236.
- Doukhan, P. (1994). Mixing: Properties and examples. Lecture Notes in Statistics (Springer). New York: Springer-Verlag.
- Pardoux, E. and Veretennikov, A. Yu. (2001). On the Poisson equation and diffusion approximation. I. Ann. Probab. 29, 3, 1061-1085.
- Viennet, G. (1997). Inequalities for absolutely regular sequences: application to density estimation. Probab. Theory Relat. Fields 107 (4), 467492.

