Nonparametric methods for dependent data: the example of the Stochastic Volatility model.

Fabienne Comte⁽¹⁾

Joint works with C. $Lacour^{(2)}$, V. Genon-Catalot⁽¹⁾ and Y. Rozenholc⁽¹⁾.

⁽¹⁾ MAP5, UMR 8145, Université Paris Descartes.

⁽²⁾ Laboratoire de Probabilités et Statistique, Université Paris Sud-Orsay.

Continuous time model

$$\begin{cases} d \log(S_t) = \sqrt{V_t} dW_t, \\ dV_t = b_c(V_t) dt + \sigma_c(V_t) dB_t \end{cases}$$

where (W_t, B_t) is a 2-dim standard Brownian Motion,

and V_t is a positive diffusion process.

Observations: $(Z_{i\delta})_{1 \le i \le n}$ for $Z_t = \log(S_t)$ and $k\delta = \Delta$, n = kN. Assumptions: Diffusion in stationary regime.

but non independent underlying sequence \Rightarrow geometrically β -mixing r.v.'s

Aim: Estimate b_c (and σ_c^2), without observing V but only $Z_t = \log(S_t)$ and provide risk bounds.

Ideas of the estimation strategy:

1) The **realized quadratic variation** associated with $(Z_{\ell\delta})_{ik+1 \le \ell < (i+1)k}$:

$$\hat{\bar{V}}_i = \frac{1}{k\delta} \sum_{j=0}^{k-1} \left(Z_{(ik+j+1)\delta} - Z_{(ik+j)\delta} \right)^2.$$

provides an approximation of the integrated volatility $(\Delta = k\delta)$

$$\bar{V}_i = \frac{1}{\Delta} \int_{i\Delta}^{(i+1)\Delta} V_s ds.$$
(1)

2) If one observes (Y_i, X_i) with $\mathbf{Y_i} = \mathbf{f}(\mathbf{X_i}) + \varepsilon_i$ where $\varepsilon_i = \text{noise}$, then **nonparametric mean square contrasts** \rightarrow good estimation of f.

Find the regression equation.

Suppose we observe directly the $(V_{i\Delta})$, then, we can write:

$$\frac{V_{(i+1)\Delta} - V_{i\Delta}}{\Delta} = \frac{1}{\Delta} \int_{i\Delta}^{(i+1)\Delta} dV_s = \frac{1}{\Delta} \int_{i\Delta}^{(i+1)\Delta} b_c(V_s) ds + \frac{1}{\Delta} \int_{i\Delta}^{(i+1)\Delta} \sigma_c(V_s) dW_s$$
$$= \mathbf{b_c}(\mathbf{V_{i\Delta}}) + \underbrace{\frac{1}{\Delta} \int_{i\Delta}^{(i+1)\Delta} \sigma_c(V_s) dW_s}_{\mathbf{noise}} + \underbrace{\frac{1}{\Delta} \int_{i\Delta}^{(i+1)\Delta} [b_c(V_s) - b_c(V_{i\Delta})] ds}_{\mathbf{Residual term}}.$$
This regression of the $\frac{V_{(i+1)\Delta} - V_{i\Delta}}{\Delta}$ on the $V_{i\Delta}$ allows to estimate b_c (see Comte *et al.* (2007)).

Mixing sequences – Martingale properties – Δ, δ small.

Suppose we observe the (\bar{V}_i)

$$\bar{V}_i = \frac{1}{\Delta} \int_{i\Delta}^{(i+1)\Delta} V_s ds,$$

then, we can write

$$\begin{split} \bar{\mathbf{V}}_{\mathbf{i}} &= \frac{1}{\Delta} \int_{i\Delta}^{(i+1)\Delta} V_s ds = \frac{1}{\Delta} \int_{i\Delta}^{(i+1)\Delta} \left(V_{i\Delta} + \int_{i\Delta}^s dV_u \right) ds \\ &= \mathbf{V}_{i\Delta} + \frac{1}{\Delta} \int_{i\Delta}^{(i+1)\Delta} [(i+1)\Delta - u] dV_u. \end{split}$$

So we have

$$\frac{\bar{\mathbf{V}}_{i+1} - \bar{\mathbf{V}}_{i}}{\Delta} = \frac{\mathbf{V}_{(i+1)\Delta} - \mathbf{V}_{i\Delta}}{\Delta} + \frac{1}{\Delta^{2}} \left[\int_{(i+1)\Delta}^{(i+2)\Delta} ((i+2)\Delta - u) dV_{u} + \int_{i\Delta}^{(i+1)\Delta} ((i+1)\Delta) dV_{u} \right].$$

$$\psi_{i\Delta}(u) = (u - i\Delta) \mathbf{I}_{[i\Delta,(i+1)\Delta[}(u) + [(i+2)\Delta - u] \mathbf{I}_{[(i+1)\Delta,(i+2)\Delta[}(u)$$

$$\frac{\overline{\mathbf{V}_{i+1}} - \overline{\mathbf{V}_{i}}}{\Delta} = \mathbf{b}(\mathbf{V}_{i\Delta}) + \underbrace{\frac{1}{\Delta^{2}} \int_{i\Delta}^{(i+2)\Delta} \psi_{i\Delta}(u) \sigma_{c}(V_{u}) dW_{u}}_{\text{noise}} + \underbrace{\frac{1}{\Delta^{2}} \int_{i\Delta}^{(i+2)\Delta} \psi_{i\Delta}(u) [b_{c}(V_{u}) - b_{c}(V_{i\Delta})] du}_{\text{residual}}.$$

Recall now

$$\hat{\bar{V}}_{i} = \frac{1}{k\delta} \sum_{j=0}^{k-1} \left(Z_{(ik+j+1)\delta} - Z_{(ik+j)\delta} \right)^{2}$$

is an **approximation of** \bar{V}_i ($\Delta = k\delta$).

Last step: quadratic variations (\hat{V}_i) built using our effective observations $(k\delta = \Delta)$:

$$\hat{\bar{V}}_i = \bar{V}_i + u_{i,k},$$

where

$$u_{i,k} = \frac{1}{\Delta} \sum_{j=0}^{k-1} \left[\left(\int_{(ik+j)\delta}^{(ik+j+1)\delta} \sqrt{V_s} dB_s \right)^2 - \int_{(ik+j)\delta}^{(ik+j+1)\delta} V_s ds \right].$$

This yields

$$\mathbf{H}_{\mathbf{i}} = \frac{\mathbf{\hat{\overline{V}}_{i+1}} - \mathbf{\hat{\overline{V}}_{i}}}{\Delta} = \frac{\overline{V}_{i+1} - \overline{V}_{i}}{\Delta} + \frac{u_{i+1,k} - u_{i,k}}{\Delta}.$$

Finally, we obtain the development,

$$\mathbf{H}_{i+1} = \mathbf{b}_{\mathbf{c}}(\mathbf{\hat{\bar{V}}}_{i}) + \mathbf{Z}_{i+1} + \mathbf{R}(i+1), \qquad (2)$$

where Z_{i+1} is a noise term (with **martingale properties**):

$$Z_{i+1} = \frac{1}{\Delta^2} \int_{(i+1)\Delta}^{(i+3)\Delta} \psi_{(i+1)\Delta}(u) \sigma_c(V_u) dW_u + (u_{i+2,k} - u_{i+1,k})/\Delta,$$

and R(i+1) is a sum of **negligible residual terms** given by

$$R(i+1) = [b_c(V_{(i+1)\Delta}) - b_c(\hat{V}_i)] + \frac{1}{\Delta^2} \int_{(i+1)\Delta}^{(i+3)\Delta} \psi_{(i+1)\Delta}(s) (b_c(V_s) - b_c(V_{(i+1)\Delta})) ds.$$

The lag in (2) is to avoid some cumbersome correlations.

Spaces of approximation

 b_c is estimated only on a compact subset A of the state space of (V_t) . For simplicity

 $A = [0, 1], \text{ and we set } b_A = b_c 1_A.$ (3)

Estimation strategy (model selection):

1) Take a family $S_m, m \in \mathcal{M}_n$ of finite dim. subspaces of $\mathbb{L}_2([0,1])$

2) Compute a collection of estimators \hat{b}_m where for all $m, \hat{b}_m \in S_m$.

3) Data driven procedure chooses among the collection of estimators the final estimator $\hat{b}_{\hat{m}}$.

Here : **Trigonometric spaces**,
$$S_m, m \in \mathcal{M}_n$$
.
 $S_m = \operatorname{Span}(\varphi_1, \dots, \varphi_{2m+1}) \subset \mathbb{L}_2([0,1])$ with
 $\varphi_1(x) = \mathbb{1}_{[0,1]}(x)$,
 $\varphi_j(x) = \sqrt{2}\operatorname{cos}(2\pi \mathbf{jx})\mathbb{1}_{[0,1]}(x)$ for even j 's
 $\varphi_j(x) = \sqrt{2}\operatorname{sin}(2\pi \mathbf{jx})\mathbb{1}_{[0,1]}(x)$ for odd j 's, $j > 1$.
Dimension $D_m = 2m + 1 = \dim(S_m) \leq \mathcal{D}_n$ and
 $\mathcal{M}_n = \{1, 3, \dots, \mathcal{D}_n\}$.

Largest space in the collection has maximal dimension \mathcal{D}_n .

For all
$$x \in [0, 1]$$
, $\sum_{j=1}^{2m+1} \varphi_j^2(x) = 2m + 1 = D_m$.

Thus, for any function $t \in S_m$, $\sup_{x \in [0,1]} |t(x)|^2 \leq D_m \int_0^1 t^2(x) dx$.

For each m, and for a function $t \in S_m$, we introduce the following contrast:

$$\gamma_{\mathbf{N}}(\mathbf{t}) = \frac{1}{\mathbf{N}} \sum_{\mathbf{i}=\mathbf{0}}^{\mathbf{N}-\mathbf{1}} [\mathbf{H}_{\mathbf{i}+\mathbf{1}} - \mathbf{t}(\hat{\mathbf{V}}_{\mathbf{i}})]^{\mathbf{2}}.$$
 (4)

Then the mean squares estimators are defined as

$$\hat{\mathbf{b}}_{\mathbf{m}} = \arg\min_{\mathbf{t}\in\mathbf{S}_{\mathbf{m}}}\gamma_{\mathbf{N}}(\mathbf{t}).$$
(5)

$$\hat{\bar{V}}_{i} = \frac{1}{k\delta} \sum_{j=0}^{k-1} \left(Z_{(ik+j+1)\delta} - Z_{(ik+j)\delta} \right)^{2}, \quad H_{i} = \frac{\hat{\bar{V}}_{i+1} - \hat{\bar{V}}_{i}}{\Delta}.$$

Observations
$$Z_{\ell\delta}$$
 from
$$\begin{cases} dZ_t = d\log(S_t) = \sqrt{V_t} dW_t, \\ dV_t = b_c(V_t) dt + \sigma_c(V_t) dB_t \end{cases}$$

Well defined, the vector: $(\hat{b}_m(\hat{V}_1), \dots, b_m(\hat{V}_N))$ and

$$\mathbb{E}\left[\frac{1}{N}\sum_{i=0}^{N-1}(\hat{b}_m(\hat{\bar{V}}_i) - b_A(\hat{\bar{V}}_i))^2\right].$$

Thus, the error is measured via the risk $\mathbb{E}(\|\hat{b}_m - b_A\|_N^2)$ where

$$||t||_N^2 = \frac{1}{N} \sum_{i=0}^{N-1} t^2(\hat{V}_i).$$
(6)

Assumptions.

Assume that the state space of (V_t) is a known open interval (r_0, r_1) of \mathbb{R}^+ , $I = [r_0, r_1] \cap \mathbb{R}$ and

[A1]
$$0 \leq r_0 < r_1 \leq +\infty$$
, $\stackrel{\circ}{I} = (r_0, r_1)$, with $\sigma_{\mathbf{c}}(\mathbf{v}) > \mathbf{0}$, for all $v \in \stackrel{\circ}{I}$.
 $b_c \in C^1(I), b'_c$ bounded on I ,
 $\sigma_c^2 \in C^2(I), (\sigma_c^2)' \sigma$ Lipschitz on $I, (\sigma_c^2)''$ bounded on I and
 $\sigma_c^2(v) \leq \sigma_1^2, \forall v \in I$.

[A2]
$$\forall v_0, v \in \overset{\circ}{I}$$
, scale density $s(v) = \exp\left[-2\int_{v_0}^{v} b_c(u)/\sigma_c^2(u)du\right]$
satisfies $\int_{r_0} s(x)dx = +\infty = \int^{r_1} s(x)dx$; speed density
 $m(v) = 1/(\sigma_c^2(v)s(v))$ satisfies $\int_{r_0}^{r_1} m(v)dv = M < +\infty$.

[A3]
$$\eta \sim \pi, \forall i, \mathbb{E}(\eta^i) < \infty, \text{ where } \pi(v)dv = (m(v)/M) \mathbb{I}_{(r_0, r_1)}(v)dv.$$

Under [A1]-[A3], (V_t) is strictly stationary with marginal distribution π , ergodic and β -mixing, *i.e.* $\lim_{t\to+\infty} \beta_V(t) = 0$.

To prove our main result, we need the following **stronger mixing condition**:

[A4] The process (V_t) is **exponentially** β -mixing, *i.e.*, there exist constants $K > 0, \theta > 0$, such that, for all $t \ge 0, \beta_V(t) \le Ke^{-\theta t}$.

[A4] satisfied in most standard examples.

Under [A1]-[A4], for fixed Δ , $(\overline{V}_i)_{i\geq 0}$ is a strictly stationary process. And we have:

Proposition 1 Under [A1]-[A4], for fixed k and δ , $(\hat{V}_i)_{i\geq 0}$ is strictly stationary and $\beta_{\hat{\nabla}}(\mathbf{i}) \leq \mathbf{c}\beta_{\mathbf{V}}(\mathbf{i}\Delta)$ for all $i\geq 1$. [A5] The process $(\overline{V}_i)_{i\geq 0}$ admits a stationary density π^* and there exist two positive constants π_0^* and π_1^* (independent of n, δ) such that $\forall m \in \mathcal{M}_n, \forall t \in S_m$,

$$\pi_0^* \|t\|^2 \le \mathbb{E}(t^2(\hat{V}_0)) \le \pi_1^* \|t\|^2.$$
(7)

The existence of the density π^* is easy to obtain. The checking of (7) is more technical.

$$||t||_{\pi^*}^2 = \int t^2(x)\pi^*(x)dx, \quad ||t||^2 = \int_0^1 t^2(x)dx \text{ and } ||t||_{\infty} = \sup_{x \in [0,1]} |t(x)|.$$

For a deterministic function $\mathbb{E}(\|\mathbf{t}\|_{\mathbf{N}}^2) = \|\mathbf{t}\|_{\pi^*}^2 = \int \mathbf{t}^2(\mathbf{x})\pi^*(\mathbf{x})\mathbf{dx}$. Under [A5], norms $\|.\|$ and $\|.\|_{\pi^*}$ are equivalent for functions in S_m **Proposition 2** Assume that $N\Delta \geq 1$ and $1/k \leq \Delta$. Assume that [A1]-[A5] hold and consider a model S_m in the collection of models with $\mathcal{D}_n \leq O(\sqrt{N\Delta}/\ln(N))$ where \mathcal{D}_n is the maximal dimension. Then the estimator \hat{b}_m of b is such that

$$\mathbb{E}(\|\mathbf{\hat{b}_m} - \mathbf{b_A}\|_{\mathbf{N}}^2) \leq 7\|\mathbf{b_m} - \mathbf{b_A}\|_{\pi^*}^2 + \mathbf{K}\frac{\mathbb{E}(\sigma^2(\mathbf{V_0}))\mathbf{D_m}}{\mathbf{N}\Delta} + \mathbf{K}'\Delta,$$

where $b_A = b \mathbf{1}_{[0,1]}$, b_m is the orthogonal projection of b on S_m and K and K' are some positive constants.

Note that the condition on \mathcal{D}_n implies that $\sqrt{N\Delta}/\ln(N)$ must be large enough.

Rates.

If
$$b_A \in \mathcal{B}_{\alpha,2,\infty}([0,1]), \alpha \geq 1$$
, and $||b_A||_{\alpha,2,\infty} \leq L$.
and $||b_m - b_A||_{\pi^*}^2 \leq \pi_1^* ||b_m - b_A||^2$
Choose $D_m = (N_n \Delta_n)^{1/(2\alpha+1)}$, we obtain
 $\mathbb{E}(||\mathbf{\hat{b}_m} - \mathbf{b_A}||_{\mathbf{n}}^2) \leq \mathbf{C}(\alpha, \mathbf{L}, \pi_1^*) (\mathbf{N_n \Delta_n})^{-2\alpha/(2\alpha+1)} + \mathbf{K}' \Delta_{\mathbf{n}}.$

$$(N_n \Delta_n)^{-2\alpha/(2\alpha+1)} = T_n^{-2\alpha/(2\alpha+1)}$$

= the **optimal nonparametric rate** proved by
Hoffmann (1999) for direct observations of V.

Second term: study of cases in which it is negligible.

Model selection

$$\hat{m} = \arg\min_{m \in \mathcal{M}_n} \left[\gamma_n(\hat{b}_m) + \operatorname{pen}(m) \right], \tag{8}$$

with pen(m) a penalty to be properly chosen. We denote by $\tilde{b} = \hat{b}_{\hat{m}}$ the resulting estimator and we need to determine pen such that, ideally,

$$\mathbb{E}(\|\tilde{b}-b_A\|_N^2) \le C \inf_{m \in \mathcal{M}_n} \left(\|b_A - b_m\|^2 + \frac{\mathbb{E}(\sigma^2(V_0))D_m}{N\Delta} \right) + \text{negligible terms},$$

with C a constant which should not be too large.

We almost reach this aim for the estimation of b.

Theorem 1 Assume that [A1]-[A5] hold, $1/k \leq \Delta$, $\Delta \leq 1$ and $N\Delta \geq 1$. Consider the collection of models with maximal dimension $\mathcal{D}_n \leq O(\sqrt{N\Delta}/\ln(N))$. Then the estimator \tilde{b} of b where \hat{m} is defined by (8) with

$$pen(\mathbf{m}) \ge \kappa \sigma_1^2 \frac{\mathbf{D}_{\mathbf{m}}}{\mathbf{N}\Delta},\tag{9}$$

where κ is a universal constant, is such that

$$\mathbb{E}(\|\tilde{b} - b_A\|_N^2) \leq C \inf_{m \in \mathcal{M}_n} \left(\|b_m - b_A\|_{\pi^*}^2 + \operatorname{pen}(m) \right) + K \left(\Delta + \frac{1}{N\Delta} + \frac{1}{\ln^2(N)k\Delta} \right).$$

Proof relies on the following **Bernstein-type Inequality**:

Lemma 1 Under the assumptions of Theorem 1, for any positive numbers ϵ and v, we have

$$\mathbb{P}\left[\sum_{i=0}^{N-1} t(\hat{\bar{V}}_i) Z_{(i+1)\Delta}^{(1)} \ge N\epsilon, \|t\|_N^2 \le v^2\right] \le \exp\left(-\frac{N\Delta\epsilon^2}{2\sigma_1^2 v^2}\right).$$

W is a Brownian motion with respect to the augmented filtration $\mathcal{F}_s = \sigma((B_u, W_u), u \leq s, \eta).$

Conclusion about technicalities associated with dependency:

- 1) Assumptions on the diffusion to ensure stationarity, mixing...
- 2) Martingale properties give the control of the centered empirical process: no loss due to mixing in the penalty.
- **3)** Coupling and variance inequality for equivalence of empirical and theoretical norms and for residual terms.

Discrete time version

(with fixed sample step, set to 1) of the stochastic volatility model.

$$\begin{cases} Y_{i} = \exp(X_{i}/2)\eta_{i}, \\ X_{i+1} = b(X_{i}) + \sigma(X_{i})\xi_{i+1}, \end{cases}$$
(10)

 (η_i) and (ξ_i) independent sequences of i.i.d. r.v.'s (noise processes).

Only Y_1, \ldots, Y_n are observed,

while process of interest is $U_i = \exp(X_i/2)$, and in particular the functions b(.) and $\sigma(.)$.

For $Y_i = \log(S_{i+1}/S_i)$: $\mathbf{Y_i} \sim_{\mathcal{L}} \mathbf{U_i}\eta_i,$ $U_i = (\int_i^{i+1} V_s ds)^{1/2} \text{ and } \eta_i \text{ i.i.d. } \mathcal{N}(0, 1).$

 \Rightarrow first equation of the continuous time model

= first equation of (10) (exact discretization in distrib.) with specific Gaussian distribution for η .

 \Rightarrow Tools for estimating the common density of the U_i 's common to both models.

But the second equations of both models: **same idea** of a time dynamics, but **do not coincide**.

Transformation into an Error-in-variables model.

$$Z_{i} = X_{i} + \varepsilon_{i}$$

$$X_{i+1} = b(X_{i}) + \sigma(X_{i})\xi_{i+1}$$
(11)

where

$$\varepsilon_i = \ln(\eta_i^2) - \mathbb{E}(\ln(\eta_i^2))$$
$$Z_i = \ln(Y_i^2) - \mathbb{E}(\ln(\eta_i^2)).$$

Here $\mathbb{E}(\ln(\eta_i^2))$ known + (η) and (ξ) are independent.

Log of $Y_i^2 \Rightarrow$ sign of Y_i can not be recovered.

Observations: $(Z_i)_{1 \leq i \leq n}$.

Quotient strategy for estimation:

$$\ell = bf,$$
 $\hat{b} = \frac{\hat{\ell}}{\hat{f}}.$

Density estimation for f + estimation of ℓ

in a **convolution model** – an **error in variable** model

Why do mixing problems vanish from important terms (for the rates).

What is the benchmark?

Projection estimator for density of X_1 when the process is **observed**,

$$\hat{f}_m = \sum_j \hat{a}_j \varphi_j, \ \hat{a}_j = \frac{1}{n} \sum_{i=1}^n \varphi_j(X_i)$$

where φ_j is e.g. still the trigonometric basis.

$$\mathbb{E}(\hat{f}_m) = f_m = \sum_j a_j \varphi_j, \ a_j = \langle f, \varphi_j \rangle.$$

Then

$$\mathbb{E}(\|\hat{f}_m - f_A\|^2) = \|f - f_m\|^2 + \mathbb{E}(\|f_m - \hat{f}_m\|^2)$$

and

$$\mathbb{E}(\|f_m - \hat{f}_m\|^2) = \mathbb{E}(\sum_j (\hat{a}_j - a_j)^2) = \sum_{\mathbf{j}} \operatorname{Var}\left(\frac{1}{\mathbf{n}} \sum_{\mathbf{i}=1}^{\mathbf{n}} \varphi_{\mathbf{j}}(\mathbf{X}_{\mathbf{i}})\right)$$

 β -mixing variance inequality:

$$\operatorname{Var}\left(\frac{1}{n}\sum_{i=1}^{n}\varphi_{j}(X_{i})\right) \leq \frac{4}{n}\int\varphi_{j}^{2}(x)b(x)d\mathbb{P}(x)$$

with

$$\sum_{j} \varphi_{j}^{2} = 2m + 1, \qquad \qquad \int b(x) d\mathbb{P}(x) \le \sum_{k} \beta_{k},$$

and

$$\sum_{j} \operatorname{Var}\left(\frac{1}{n} \sum_{i=1}^{n} \varphi_{j}(X_{i})\right) \leq \sum_{\mathbf{k}} \beta_{\mathbf{k}} \frac{D_{m}}{n}$$

This explains why $pen(m) = \kappa \sum_{\mathbf{k}} \beta_{\mathbf{k}} \frac{D_m}{n}$

Lot of works on the subject (Lerasle (2009), Gannaz and Wintenberger (2010)).

Now for
$$Z_i = X_i + \varepsilon_i$$
, $f_Z = f \star f_{\varepsilon}$ (convolution).
 $f_Z^* = f^* f_{\varepsilon}^*$ where $g^*(u) = \int e^{ixu} g(x) dx$
 $f^* = f_Z^* / f_{\varepsilon}^* \Rightarrow \hat{\mathbf{f}}^*(\mathbf{u}) = \frac{\frac{1}{n} \sum_{\mathbf{k}=1}^{n} e^{i\mathbf{u}\mathbf{Z}_{\mathbf{k}}}}{f_{\varepsilon}^*(\mathbf{u})}$

$$\hat{f}_m(x) = \frac{1}{2\pi} \int_{-\pi m}^{\pi m} e^{-iux} \hat{f}^*(u) du$$

Fourier inversion with cutoff, for integrability.

Bias measured w.r.t. $f_m(x) = \frac{1}{2\pi} \int_{-\pi m}^{\pi m} e^{-iux} f^*(u) du$

Mean squared error:

$$\mathbb{E}(\|\mathbf{\hat{f}_m} - \mathbf{f}\|^2) = \|\mathbf{f} - \mathbf{f_m}\|^2 + \mathbb{E}(\|\mathbf{f_m} - \mathbf{\hat{f}_m}\|^2).$$

Squared bias $\|f - f_m\|^2 = \int_{|u| \ge \pi m} |f^*(u)|^2 du$

Variance term

$$\mathbb{E}(\|f_m - \hat{f}_m\|^2) = \operatorname{Var}\left(\frac{1}{n}\sum_{k=1}^n \int_{-\pi m}^{\pi m} \frac{e^{iuZ_k}}{f_{\varepsilon}^*(u)} du\right)$$
$$= \frac{1}{n^2} \sum_{k,\ell=1}^n \int_{-\pi m}^{\pi m} \int_{-\pi m}^{\pi m} \frac{\operatorname{cov}(\mathbf{e}^{\mathbf{iuZk}}, \mathbf{e}^{\mathbf{ivZ}_\ell})}{f_{\varepsilon}^*(u)f_{\varepsilon}^*(-v)} du$$

For $k \neq \ell$

$$\operatorname{cov}(e^{iuZk}, e^{ivZ_{\ell}}) = \mathbb{E}(e^{i(uX_{k} - vX_{\ell}) + i(u\varepsilon_{k} - v\varepsilon_{\ell})}) - \mathbb{E}(e^{iu(X_{k} + \varepsilon_{k})})\mathbb{E}(e^{-iv(X_{\ell} + \varepsilon_{\ell})})$$
$$= \operatorname{cov}(\mathbf{e}^{\mathbf{iuXk}}, \mathbf{e}^{\mathbf{ivX}_{\ell}})\mathbf{f}_{\varepsilon}^{*}(\mathbf{u})\mathbf{f}_{\varepsilon}^{*}(-\mathbf{v})$$

This yields

$$\mathbb{E}(\|f_m - \hat{f}_m\|^2) \leq \underbrace{\frac{1}{n} \int_{-\pi m}^{\pi m} \frac{du}{|f_{\varepsilon}^*(u)|^2}}_{\text{usual deconvolution}} + \underbrace{\operatorname{Var}\left(\frac{1}{n} \sum_{k=1}^n \int_{-\pi m}^{\pi m} e^{iuX_k} du\right)}_{\text{standard variance}}$$

variance bound

of a mixing process

If $|f_{\varepsilon}^*(u)| \sim C(1+|u|)^{-\gamma}$, main variance term $= O\left(\frac{m^{2\gamma+1}}{n}\right)$.

Second variance term = $O\left(\frac{m}{n}\right)$ with mixing or independence \Rightarrow Negligible.

(see Comte, Dedecker, Taupin (2008)).

More generally

$$|f_{\varepsilon}^*(u)| \sim c(1+|u|)^{-\gamma} \exp(-\mu|u|^{\delta})$$

Examples: Gaussian case $|f_{\varepsilon}^*(u)| = \exp(-u^2/2), \gamma = 0, \delta = 2.$

Case $\log(\mathcal{N}(0,1)^2)$: $|f_{\varepsilon}^*(u)| \sim \sqrt{2/e} \exp(-\pi |u|/2), \ \gamma = 0, \ \delta = 1.$

- \Rightarrow Nonstandard variance orders,
- \Rightarrow **Nonstandard rates** of convergence for well-chosen *m*.

Model (Cutoff) Selection.

$$pen(m) = \frac{\kappa}{n} m^{\omega} \int_{-\pi m}^{\pi m} \frac{du}{|f_{\varepsilon}^*(u)|^2} \text{ where } \omega = \begin{cases} 0 & \text{if } 0 \le \delta < 1/3 \\ \inf(\frac{3\delta - 1}{2}, \delta) & \text{if } \delta > 1/3 \end{cases}$$

$$\hat{m} = \arg\min_{m} \left\{ -\|\hat{f}_{m}\|^{2} + \operatorname{pen}(m) \right\}.$$

We get for β -mixing with coefficients of X such that $\beta_k \leq ck^{-(1+\theta)}$ with $\theta > 3$, we get

$$\mathbb{E}(\|\hat{f}_{\hat{m}} - f\|^2) \le C \inf_{1 \le m \le m_n} \left(\|f - f_m\|^2 + \operatorname{pen}(m) \right) + \frac{C}{n}$$

where m_n must be cautiously bounded.

In term of the mixing study, much thinner results can be proved, not detailed here.

Now: Conditions are required for X to be β -mixing, in an autoregressive and heteroskedastic model. See e.g. Doukhan (1994).

For $\ell = bf$, same principle:

$$\hat{\ell}_m = \frac{1}{2\pi n} \sum_{k=1}^n Z_{k+1} \int_{-\pi m}^{\pi m} \frac{e^{-iuZ_k}}{f_{\varepsilon}^*(u)} du$$
New variance term = $\mathbb{E}(\mathbf{Z}_1^2) \frac{\int_{-\pi m}^{\pi m} \frac{du}{|f_{\varepsilon}^*(u)|^2}}{n}$

Same orders as previously but unbounded \Rightarrow additional technical difficulties.

Moreover Z_{k+1} and $Z_k \Rightarrow$ two different indices, to split into odd/even terms.

$$Z_{k+1} = X_{k+1} + \varepsilon_{k+1} = b(X_k) + \sigma(X_k)\xi_{k+1} + \varepsilon_{k+1},$$

while $Z_k = X_k + \varepsilon_k$. Many results are obtained in two steps by conditioning by X.

Risk bound for one estimator holds for $\theta > 1$.

$$\operatorname{pen}_{\ell}(m) = \mathbb{E}(Z_1^2)\operatorname{pen}(m)$$

and under much stronger mixing conditions $\theta > 14$, + moment conditions

$$\hat{m}_{\ell} = \arg\min_{m} \left(-\|\hat{\ell}_m\|^2 + \operatorname{pen}_{\ell}(m) \right)$$

$$\mathbb{E}(\|\hat{\ell}_{\hat{m}_{\ell}} - \ell\|^2) \le C \inf_{1 \le m \le m_n} \left(\|\ell - \ell_m\|^2 + \operatorname{pen}_{\ell}(m) \right) + \frac{C}{n}$$

References.

Part 1.

"Nonparametric estimation for a stochastic volatility model", with V. Genon-Catalot and Y. Rozenholc. *Finance and Stochastics* 14, n^o1, 49-80, 2010.

• "Nonparametric adaptive estimation for integrated diffusions," with V. Genon-Catalot and Y. Rozenholc. *Stochastic Processes and Their Applications* **119**, n°3, 811-834, 2009.

"Penalized nonparametric mean square estimation of the coefficients of diffusion processes," with V. Genon-Catalot and Y. Rozenholc, *Bernoulli* 13, n°2, 514-543, 2007.

Part 2.

• "Adaptive estimation of the dynamics of a discrete time stochastic volatility model", with C. Lacour and Y. Rozenholc. *Journal of Econometrics* **154**, n^o1, 59-73, 2010.

• "Adaptive density deconvolution for dependent inputs with measurement errors", with J. Dedecker and M.-L. Taupin. *Mathematical Methods of Statistics* **17**, n°2, 87-112, 2008.

• "Nonparametric estimation of the regression function in an errors-in-variables model", with M.-L. Taupin, *Statistica Sinica* **17**, n°3, 1065-1090, 2007.

• Berbee, H. (1979). Random walks with Stationary Increments and Renewal Theory. Mathematical Centre Tracts 112. Amsterdam: Mathematisch Centrum.

• Dedecker, J. and Prieur, C. (2005). New dependence coefficients. Examples and applications to statistics. *Probab. Theory Relat. Fields* **132** (2), 203236.

• Doukhan, P. (1994). *Mixing: Properties and examples.* Lecture Notes in Statistics (Springer). New York: Springer-Verlag.

• Pardoux, E. and Veretennikov, A. Yu. (2001). On the Poisson equation and diffusion approximation. I. Ann. Probab. 29, 3, 1061-1085.

Viennet, G. (1997). Inequalities for absolutely regular sequences: application to density estimation. *Probab. Theory Relat. Fields*107 (4), 467492.