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Please remember that all of the following

is joint work with

Ulrich Stadtmüller, Ulm University

The LIL-LSL part is also joint with

Fredrik Jonsson, Uppsala University

Allan Gut, Paris, June 22, 2010
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Background
X , X1, X2, . . . i.i.d. Sn = ∑

n
k=1 Xk , n ≥ 1.

Windows — delayed sums

Tn,n+k =
n+k

∑
j=n+1

Xj , k ≥ 1.

LLN Chow (1973)

lim
n→∞

Tn,n+nα

nα
= 0 a.s. ⇐⇒ E |X |1/α < ∞ , E X = 0

LSL — Lai (1974)

limsup
n→∞

Tn,n+nα

√
2nα logn

= σ
√

1−α a.s.

⇐⇒
E (|X |2/α

(
log+ |X |

)−1/α
< ∞ , E X 2 = σ

2, E X = 0 .

Law of the single logarithm

Allan Gut, Paris, June 22, 2010
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Multiindex
{Xk, k ∈ Zd

+} i.i.d. Sn = ∑k≤n Xk, n ∈ Zd
+.

Partial order ≤ coordinate-wise.

nα coordinate-wise α-powers.

n→ ∞ means ni → ∞ all i , |n|= ∏
d
i=1 ni .

Tail probabilities and moments

d(j) = Card{k : |k|= j}= o(jδ ), ∀ δ > 0 ,

M(j) = Card{k : |k| ≤ j}→ j(log j)d−1

(d−1)!
.

Partial summation =⇒

∑
n

P(|X |> |n|)∼ E M(|X |)∼ E |X |(log+ |X |)d−1.

Allan Gut, Paris, June 22, 2010
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The law of the iterated logartihm — (LIL)

limsup
n→∞

Sn√
2|n| log log |n|

= σ
√

d a.s.

⇐⇒
E X = 0, E X 2 = σ2 , when d = 1,

E X 2 (log+ |X |)d−1

log+ log+ |X |
< ∞, and

E X = 0, E X 2 = σ2 , when d ≥ 2 .

d = 1: Hartman-Wintner (1941) (sufficiency)

Strassen (1966) (necessity)

d ≥ 2: Wichura (1973)

Allan Gut, Paris, June 22, 2010
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Remark

Converse to LIL easy when d ≥ 2, since

LIL

=⇒ Xn√
|n| log log |n|

a.s.→ 0

⇐⇒ ∑
n

P(|X |>
√
|n| log log |n|) < ∞

⇐⇒ ∑
j

d(j)P(|X |>
√

j log log j) < ∞

⇐⇒ E X 2 (log+ |X |)d−1

log+ log+ |X |
< ∞.

Not enough when d = 1 !

Allan Gut, Paris, June 22, 2010
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A typical window for d = 2

Tn,n+k = Sn1+k1,n2+k2 −Sn1+k1,n2 −Sn1,n2+k2 +Sn1,n2

-
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Theorem

{Xk, k ∈ Zd
+} i.i.d., E X = 0, VarX = σ2,

Sn = ∑k≤n Xk, n ∈ Zd
+, 0 < α < 1.

If

E X 2/α(log+ |X |)d−1−1/α < ∞ (1)

then

limsup
n→∞

Tn,n+nα√
2|n|α log |n|

= σ
√

1−α a.s. (2)

Conversely, if

P(limsup
n→∞

|Tn,n+nα |√
|n|α log |n|

< ∞) > 0, (3)

then (1) holds, E X = 0, and (2) holds with σ2 = VarX . 2

Allan Gut, Paris, June 22, 2010
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Sketch of proof

δ small,

bn = b|n| =
σδ

ε

√
|n|α

log |n|
,

X ′
n = XnI{|Xn| ≤ bn},

X ′′
n = XnI{bn < |Xn|< δ

√
|n|α log |n|},

X ′′′
n = XnI{|Xn| ≥ δ

√
|n|α log |n|}.

I S ′n, S ′′n , S ′′′n , etc ;

I E X ′
n, E X ′′

n , E X ′′′
n “small” ;

I E S ′n, E S ′′n , (E S ′′′n ) “small” ;

I Var(T ′
n,n+nα )≈ nασ2.

Allan Gut, Paris, June 22, 2010
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Exponential bounds; T ′
n,n+nα

Upper bound

P(|T ′
n,n+nα |> ε

√
2|n|α log |n|)

≤ P(|T ′
n,n+nα −ET ′

n,n+nα |> ε(1−δ )
√

2|n|α log |n|)

≤ 2|n|−
ε2

σ2 ·(1−δ )3 , |n| large.

Lower bound

P(T ′
n,n+nα > ε

√
2|n|α log |n|)

≥ P(T ′
n,n+nα −ET ′

n,n+nα > ε(1+δ )
√

2|n|α log |n|)

≥ |n|−
ε2

σ2 ·
(1+δ )2(1+γ)

(1−δ ) , |n| large, γ small > 0.

Allan Gut, Paris, June 22, 2010
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Same procedure as every year

1. Dispose of T ′′
n,n+nα ;

2. Dispose of T ′′′
n,n+nα ;

3. Upper exponential for subsequence of T ′
n,n+nα ;

4. Borel-Cantelli 1 T ′
n,n+nα OK;

5. Filling gaps;

6. 1+2+4+5 =⇒ limsupTn,n+nα ≤ ·· · ;

7. Lower exponential for subsequence of T ′
n,n+nα ;

8. → increments;

9. Borel-Cantelli 2 T ′
n,n+nα OK;

10. 1+2+9 =⇒ limsupTn,n+nα ≥ ·· · ;

11. 6+10 =⇒ limsupTn,n+nα = · · · ;

12. 2

Allan Gut, Paris, June 22, 2010
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Upper bound; Filling gaps — center

-
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Upper bound; Filling gaps — boundary

We first need a denser subsequence, and then:

-

6
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Lower bound

Independence of windows (B-C 2) ⇐⇒ Disjointness

-
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s
(i

1
1−α , k

1
1−α )

s

s

(i
1

1−α + i
α

1−α , k
1

1−α )

(i
1

1−α , k
1

1−α + k
α

1−α )

s
((i+1)

1
1−α , (k+1)

1
1−α )

Allan Gut, Paris, June 22, 2010
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Finally!

limsup
n→∞

|Tn,n+nα |√
2|n|α log |n|

= σ
√

1−α a.s.

which proves the sufficiency.

Allan Gut, Paris, June 22, 2010
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Necessity

LSL =⇒

limsup
n→∞

|Xn|√
|n|α log |n|

< ∞ a.s.,

so that Borel-Cantelli 2 =⇒

∞ > ∑
n

P(|Xn|>
√
|n|α log |n|)

= ∑
n

P(|X |>
√
|n|α log |n|),

⇐⇒

E X 2/α(log+ |X |)d−1−1/α < ∞.

Allan Gut, Paris, June 22, 2010
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Finished!

Allan Gut, Paris, June 22, 2010
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Fredrik: What happens if the α ’s are different?

Now:

α −→ α = (α1,α2, . . . ,αd)

nα −→ nα = (nα1
1 ,nα2

2 , . . . ,nαd
d )

|n|α −→ |nα |=
d

∏
k=1

nαk
k

Allan Gut, Paris, June 22, 2010
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Theorem

{Xk, k ∈ Zd
+} i.i.d., E X = 0, VarX = σ2.

0 < α1≤α2≤ ·· · ≤αd < 1 and p = max{k : αk = α1}.

If
E |X |2/α1(log+ |X |)p−1−1/α1 < ∞,

then

limsup
n→∞

Tn,n+nα√
2|n|α log |n|

= σ
√

1−α1 a.s.

And “conversely”. 2

Allan Gut, Paris, June 22, 2010
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What about the degenerate case; α = 0 ?

0 = α1 ≤ α2 ≤ ·· · ≤ αd < 1

q = max{k : αk = 0} r = max{k : αk = αq+1}.

If
E |X |2/αq+1(log+ |X |)r−q−1−1/αq+1 < ∞ ,

then

limsup
n→∞

Tn,n+nα√
2|n|α log |n|

= σ
√

1−αq+1 a.s.

And conversely.

In particular q = 0, r = d and q = 0, r = p.
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What about the boundary case; α = 1 ?

Now:

nα −→ n/ logn, n/ log logn, . . .

More generally

nα −→ an = n/L(n),

where L ∈S V is differentiable and · · · · · · .

Moreover,
f (n) = min{an ·dn, n} ,

where

dn = log
n

an
+ log logn = logL(n)+ log logn.

Allan Gut, Paris, June 22, 2010
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What about the boundary case; α = 1 ?

Now:

nα −→ n/ logn, n/ log logn, . . .

More generally

nα −→ an = n/L(n),

where L ∈S V is differentiable and · · · · · · .
Moreover,

f (n) = min{an ·dn, n} ,
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Between LIL and LSL

Theorem
{Xk , k ≥ 1} i.i.d., E X = 0, VarX = σ2.

If
E f −1(X 2) < ∞,

then

limsup
n→∞

Tn,n+an√
2andn

= σ a.s.

And conversely.
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Two “immediate” examples

L(n) = logn

limsup
n→∞

Tn,n+n/ logn√
4 n

logn log logn
= σ a.s.

⇐⇒ E X 2 log+ |X |
log+ log+ |X |

< ∞ .

L(n) = logm n, m = 2,3, . . .

limsup
n→∞

Tn,n+n/ logm(n)√
2 n

logm(n) log logn
= σ a.s.

⇐⇒ E X 2 = σ
2 < ∞ .
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Remarks on the proof
I LIL-type truncations.

I Lemma (Fredrik)

Set ϕ(y) =
∫ y L(u)du

u . Then

log(L(t) log t)
logϕ(t)

→ 1 as t → ∞,

so that dnk
∼ logk as k → ∞.

I LIL-type proof:
T ′ via exp. bounds

T ′′ the “thin piece” via complicated analysis

T ′′′ via moment assumption.

I Then the entire sequence.
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Two further examples

L(n) = (logn)p/(log logn)q, p, q > 0

limsup
n→∞

Tn,n+n(log logn)q/(logn)p√
2(p +1) n

(logn)p (log logn)q+1
= σ a.s.

⇐⇒ E X 2 (log+ |X |)p

(log+ log+ |X |)q+1
< ∞ .

L(n) = exp{
√

logn}

limsup
n→∞

Tn,n+n/exp{
√

logn}√
2 n

exp{
√

logn}
√

logn
= σ a.s.

⇐⇒ E X 2 exp{
√

2 log+ |X |}√
log+ |X |

< ∞ .

Allan Gut, Paris, June 22, 2010
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Additional variations
I A multivariate version of the “between case”;

I Different growth rates of the L-functions;

I Mixtures of LSL and “between”.

I Etc ?

Some examples:

I Tm+m/ logm,n+n/ logn ;

I Tm+m/ log logm,n+n/ log logn ;

I Tm+m/logm,n+n/log logn ;

I Tm+mα ,n+n/logn ;

I Etc ?

Allan Gut, Paris, June 22, 2010
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Results — same growth rate

{Xk, k ∈ Z2
+} i.i.d.

limsup
m,n→∞

T(m,n) ,(m+m/ logm,n+n/ logn)√
4mn log logm+log logn

logm logn

= σ a.s.

⇐⇒ E X 2 (log+ |X |)3

log+ log+ |X |
< ∞,

limsup
m,n→∞

T(m,n) ,(m+m/ log logm,n+n/ log logn)√
2mn log logm+log logn

log logm log logn

= σ a.s.

⇐⇒ E X 2 log+ |X | log+ log+ |X |< ∞,

and, in both cases, E X = 0, E X 2 = σ2.

Allan Gut, Paris, June 22, 2010
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Results — same growth rate

{Xk, k ∈ Z2
+} i.i.d.

limsup
m,n→∞

T(m,n) ,(m+m/ logm,n+n/ logn)√
4mn log logm+log logn

logm logn

= σ a.s.

⇐⇒ E X 2 (log+ |X |)3

log+ log+ |X |
< ∞,

limsup
m,n→∞

T(m,n) ,(m+m/ log logm,n+n/ log logn)√
2mn log logm+log logn

log logm log logn

= σ a.s.

⇐⇒ E X 2 log+ |X | log+ log+ |X |< ∞,

and, in both cases, E X = 0, E X 2 = σ2.
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Results — different growth rates

limsup
m,n→∞

T(m,n) ,(m+m/logm,n+n/log logn)√
4mn log logm+log logn

logm log logn

= σ a.s.

⇐⇒ E X 2(log+ |X |)2 < ∞,

and, for 0 < α < 1,

limsup
m,n→∞

T(m,n) ,(m+mα ,n+n/logn)√
2mαn (1−α) log(mn)

logn

= σ a.s.

⇐⇒ E X 2/α(log+ |X |)−1/α < ∞,

and, in both cases, E X = 0, E X 2 = σ2.

Allan Gut, Paris, June 22, 2010
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A Question to Magda

what about dependent cases?

For example,

interlaced rho-mixing?
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Dear Magda

Best wishes !

Allt gott !

Meilleurs voeux !

Alles Gute !

Mazal tov !
Allan Gut, Paris, June 22, 2010
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