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How to solve the equation U =D A+ BU?

Let (Ak ,Bk), k = 1, 2, . . . be independent copies of the random
vector (A,B). If the series

U∞ =
∞∑
k=1

Ak
k−1∏
j=1

Bj

is almost surely convergent, then the distribution of U∞ satisfies
the equation

U =D A+ BU,

where U and (A,B) are independent.
Moreover, if E log |B| < 0, then U∞ exists and for arbitrary U0 the
stochastic recursion

Un+1 = An+1 + Bn+1Un,

defines a sequence convergent in distribution to U∞.
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Example: squares of ARCH(1) processes

ARCH = AutoRegressive Conditionally Heteroskedastic (Engle,
1982)

An ARCH(1) process is a Markov chain given by the
recurrence equation

Xn+1 =
√
β + λX 2nZn+1,

where β, λ > 0 and {Zn} is an i.i.d. sequence independent of
X0. We always assume that EZn = 0 i EZ 2n = 1.

More volatility comparing to linear model (ARMA . . . ):

E (X 2n+1|σ(X0,X1, . . . ,Xn)) = β + λX 2n .

Naturally arising sequences with “heavy tails”.
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Stationarity of ARCH(1)

An excellent primer: Embrechts, Klüppelberg i Mikosch, Modelling
Extremal Events in Insurance and Finance, Springer 1997.

If β > 0 and λ ∈ (0, 2eγ), then {Xn} is a strictly stationary
sequence if and only if

X 20 ∼ β
∞∑
m=1

Z 2m
m−1∏
j=1

(λZ 2j ).

The sequence {X 2k } satisfies the equation of stochastic
recursion:

X 2k+1 = βZ 2k+1 + (λZ 2k+1)X
2
k = Ak+1 + Bk+1X

2
k ,

and this is the key argument!
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Heavy tails of ARCH(1) processes

Let β > 0 and λ ∈ (0, 2eγ) and let κ > 0 be the unique
positive root of the equation

E (λZ 21 )
u = 1.

Then, as x →∞,

P(X0 > x) ∼
Cβ,λ

2
x−2κ, where

Cβ,λ =
E
[(
β + λX 20

)κ − (λX 20 )κ]
κλκE

[(
λZ 21 )

κ ln(λZ 21 )
] ∈ (0,+∞).

This result essentially belongs to H. Kesten (1973)!
A complete proof, one-dimensional and using ideas of
Grinkevičius (1975), belongs to C. Goldie (1991).
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Example: squares of GARCH(1,1) processes

GARCH = Generalized ARCH(Bollerslev, 1986)

A GARCH(1,1) process is given by the system or recurrence
equations

Xn = σnZn,

σ2n = β + λX 2n−1 + δσ2n−1 ,

where β, λ, δ  0, {Zn} is an i.i.d. sequence satisfying
EZn = 0, EZ 2n = 1, and X0 is independent of {Zn}.
According to the relation

σ2n = β + (λZ 2n−1 + δ)σ2n−1 ,

many of properties of GARCH(1,1) processes may be deduced
from the corresponding properties of stochastic recursions.
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Why to study GARCH(1,1) processes?

In the definition of GARCH(1,1) processes there are three
parameters. This gives more flexibility in econometric
modeling. So much that Engle was awarded with the Nobel
Prize in 2003.

It is interesting that the estimation of parameters on the base
of real data gives values of λ+ δ very close to 1, e.g. 0,99
(Stărică).

But then things become subtle - 1 is a critical case

.

If {σ2n} in GARCH(1,1) model is a stationary process with
finite variance, then necessary λ+ δ < 1 and

Eσ2n =
β

1− (λ+ δ)
.

If λ+ δ = 1 and {σ2n} is stationary, then Eσ2n = +∞.
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Recent results for stochastic recursions

Y. Guivarc’h, Heavy tail properties of stationary solutions of
multidimensional stochastic recursions, in: D. Denteneer, F. den
Hollander and E. Verbitskiy (Eds.), Dynamics & Stochastics:
Festschrift in honor of M. S. Keane, IMS Lecture
Notes–Monograph Series, 48 (2006), 85–99.

Y. Guivarc’h and E. Le Page, On spectral properties of a family of
transfer operators and convergence to stable laws for affine random
walks. Ergodic Theory. Dynam. Systems, 28 (2008), 423–446.
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Yet another example

Consider the ARCH(1) recurrence with β = 1, λ = 1 and

P(Zn = 0) = 1/2,P(Zn =
√

2) = P(Zn = −
√

2) = 1/4.

Then

U∞ =
∞∑
k=1

k∏
j=1

Z 2j .

has the stationary distribution for squares of the corresponding
ARCH(1) process. But there is no C > 0 such that

P(U∞ > x) ∼ Cx−1

and so Kesten’s theorem does not work in this simple example.
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Assumptions

We assume non-negativity: P(A  0) = P(B  0) = 1

and
non-degeneracy:

P(B = 1) < 1,

P(A = 0) < 1.

As usually we assume that there exists a constant κ > 0 such that

EBκ = 1,

EAκ < +∞.

Remark: the function ψ(p) = EBpI (B > 0) is strictly convex in
(0, κ) and we have ψ(κ) = 1 and ψ(p) < 1 in (0, κ). Hence

EBκ lnB ∈ (0,+∞].
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Theorem on asymptotics of truncated moments

Theorem

If ∫ ∞
1
EBκI{B > u} du/u = EBκ ln+ B < +∞,

then

EUκI{U ¬ t} ∼ E ((A+ BU)
κ − (BU)κ)

EBκ lnB
ln t.

If ∫ t
1
EBκI{B > u} du/u = `(ln t),

for some slowly varying function ` : IR+ → IR+, `(x)→∞, then

EUκI{U ¬ t} ∼ E ((A+ BU)κ − (BU)κ)
ln t
`(ln t)

.
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Asymptotics of truncated moments - comments

It is well known that

P(U > t) ∼ Ct−κ, as t →∞,

implies
EUκI{U ¬ t} ∼ κC ln t.

Hence our theorem provides an alternative way of identifying the
constant in Kesten’s theorem.

C =
E ((A+ BU)κ − (BU)κ)

κEBκ lnB
.

But the theorem also shows that there exist solutions to the
equation U =D A+ BU, which admit different from the
polynomial asymptotics of tail probabilities.
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The sketch of the proof
CLT - conjecture

CLT for GARCH(1,1) processes with λ+ δ = 1

Remark: If λ+ δ = 1, then κ = 1 for {X 2k }.

Theorem

Let {Xk} be a GARCH(1,1) process, β > 0, λ+ δ = 1. If {Zk} is
such that {Xk} is α-mixing with exponential rate and∫ t

1
E (δ + λZ 2)I{(δ + λZ 2) > u} du/u = `(ln t),

then √
`(ln n)
n ln n

(X1 + X2 + . . .+ Xn) −→
D
N (0, β).

Remark: if, for example, `(x) = ln x then we have a limit theorem
with norming

√
n ln n/ ln ln n.
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Refinements

Donsker’s Theorem for processes

Sn(t) =

√
`(ln n)
βn ln n

[nt]∑
k=1

Xk .

In the theorem we did not mention stationarity. The theorem
holds under arbitrary initial distribution!
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The sketch of the proof

We apply the martingale CLT.

We know that

σ2n = β + (λZ 2n−1 + δ)σ2n−1,

is the conditional variance of Xn. (Generalized, for EX 2k =∞ under
stationary distribution and if `(x)→∞.) And by the main theorem
we know asymptotics of the truncated expectation of σ20 under the
stationary distribution! The most difficult task is to show

`(ln n)
βn ln n

(σ20 + σ21 + . . .+ σ2n−1) −→P 1.

Here the sequence is stationary ergodic, but the expectation is
infinite!
There exists a specific result of this type.
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The sketch of the proof

We apply the martingale CLT. We know that

σ2n = β + (λZ 2n−1 + δ)σ2n−1,

is the conditional variance of Xn. (Generalized, for EX 2k =∞ under
stationary distribution and if `(x)→∞.) And by the main theorem
we know asymptotics of the truncated expectation of σ20 under the
stationary distribution! The most difficult task is to show
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Szewczak’s law of large numbers

Theorem (Szewczak (2005))

Let {Yk} be a strongly mixing strictly stationary sequence.
Suppose that

U2(x) = EY 2k I{|Yk | ¬ x} is a slowly varying function,
U2(∞) =∞;

{bn} is such that b2n ∼ nU2(bn);
nα(brnc)/rn → 0, where

rn =
(

bnU2(bn)
E |Y |3I{|Yk | ¬ bn}

)2
.

Then
Y 20 + Y

2
1 + . . .+ Y 2n−1
b2n

−→
P

1.
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CLT for GARCH(1,1) processes - conjecture

The conjectured form of the theorem

Let {Xk} be a GARCH(1,1) process, β > 0, λ+ δ = 1. If {Zk} is
such that∫ t

1
E (δ + λZ 2)I{(δ + λZ 2) > u} du/u = `(ln t),

then √
`(ln n)
n ln n

(X1 + X2 + . . .+ Xn) −→
D
N (0, β).
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