Truncated moments of perpetuities and

a central limit theorem for $\operatorname{GARCH}(1,1)$ processes

Adam Jakubowski

Nicolaus Copernicus University

Limit theorems for dependent data and applications Conference in honour of Professor Magda Peligrad La Sorbonne, 21-23 June 2010

Stochastic recursions
Truncated moments of stochastic recursions CLT for $\operatorname{GARCH}(1,1)$ processes

Equation $U=\mathcal{D} A+B U$
Example: squares of $\mathrm{ARCH}(1)$ processes
Example: squares of $\operatorname{GARCH}(1,1)$ processes
Recent results for stochastic recursions

How to solve the equation $U=\mathcal{D} A+B U$?

Stochastic recursions
Truncated moments of stochastic recursions CLT for $\operatorname{GARCH}(1,1)$ processes

How to solve the equation $U=\mathcal{D} A+B U$?

Let $\left(A_{k}, B_{k}\right), k=1,2, \ldots$ be independent copies of the random vector (A, B). If the series

$$
U_{\infty}=\sum_{k=1}^{\infty} A_{k} \prod_{j=1}^{k-1} B_{j}
$$

is almost surely convergent, then the distribution of U_{∞} satisfies the equation

$$
U={ }_{\mathcal{D}} A+B U,
$$

where U and (A, B) are independent.

Stochastic recursions
Truncated moments of stochastic recursions CLT for $\operatorname{GARCH}(1,1)$ processes

How to solve the equation $U=\mathcal{D} A+B U$?

Let $\left(A_{k}, B_{k}\right), k=1,2, \ldots$ be independent copies of the random vector (A, B). If the series

$$
U_{\infty}=\sum_{k=1}^{\infty} A_{k} \prod_{j=1}^{k-1} B_{j}
$$

is almost surely convergent, then the distribution of U_{∞} satisfies the equation

$$
U={ }_{\mathcal{D}} A+B U,
$$

where U and (A, B) are independent.
Moreover, if $E \log |B|<0$, then U_{∞} exists

How to solve the equation $U=\mathcal{D} A+B U$?

Let $\left(A_{k}, B_{k}\right), k=1,2, \ldots$ be independent copies of the random vector (A, B). If the series

$$
U_{\infty}=\sum_{k=1}^{\infty} A_{k} \prod_{j=1}^{k-1} B_{j}
$$

is almost surely convergent, then the distribution of U_{∞} satisfies the equation

$$
U={ }_{\mathcal{D}} A+B U,
$$

where U and (A, B) are independent.
Moreover, if $E \log |B|<0$, then U_{∞} exists and for arbitrary U_{0} the stochastic recursion

$$
U_{n+1}=A_{n+1}+B_{n+1} U_{n}
$$

defines a sequence convergent in distribution to U_{∞}.

Stochastic recursions

Equation $U=\mathcal{D} A+B U$
Example: squares of $\operatorname{ARCH}(1)$ processes
Example: squares of $\operatorname{GARCH}(1,1)$ processes
Recent results for stochastic recursions

Example: squares of $\mathrm{ARCH}(1)$ processes

ARCH $=$ AutoRegressive Conditionally Heteroskedastic (Engle, 1982)

Example: squares of $\mathrm{ARCH}(1)$ processes

ARCH $=$ AutoRegressive Conditionally Heteroskedastic (Engle, 1982)

- An $\operatorname{ARCH}(1)$ process is a Markov chain given by the recurrence equation

$$
X_{n+1}=\sqrt{\beta+\lambda X_{n}^{2}} Z_{n+1}
$$

where $\beta, \lambda>0$ and $\left\{Z_{n}\right\}$ is an i.i.d. sequence independent of X_{0}. We always assume that $E Z_{n}=0$ i $E Z_{n}^{2}=1$.

Example: squares of ARCH(1) processes

ARCH $=$ AutoRegressive Conditionally Heteroskedastic (Engle, 1982)

- An $\operatorname{ARCH}(1)$ process is a Markov chain given by the recurrence equation

$$
X_{n+1}=\sqrt{\beta+\lambda X_{n}^{2}} Z_{n+1}
$$

where $\beta, \lambda>0$ and $\left\{Z_{n}\right\}$ is an i.i.d. sequence independent of X_{0}. We always assume that $E Z_{n}=0$ i $E Z_{n}^{2}=1$.

- More volatility comparing to linear model (ARMA ...):

$$
E\left(X_{n+1}^{2} \mid \sigma\left(X_{0}, X_{1}, \ldots, X_{n}\right)\right)=\beta+\lambda X_{n}^{2}
$$

Example: squares of ARCH(1) processes

ARCH $=$ AutoRegressive Conditionally Heteroskedastic (Engle, 1982)

- An $\operatorname{ARCH}(1)$ process is a Markov chain given by the recurrence equation

$$
X_{n+1}=\sqrt{\beta+\lambda X_{n}^{2}} Z_{n+1}
$$

where $\beta, \lambda>0$ and $\left\{Z_{n}\right\}$ is an i.i.d. sequence independent of X_{0}. We always assume that $E Z_{n}=0$ i $E Z_{n}^{2}=1$.

- More volatility comparing to linear model (ARMA ...):

$$
E\left(X_{n+1}^{2} \mid \sigma\left(X_{0}, X_{1}, \ldots, X_{n}\right)\right)=\beta+\lambda X_{n}^{2}
$$

- Naturally arising sequences with "heavy tails".

Stationarity of ARCH(1)

An excellent primer: Embrechts, Klüppelberg i Mikosch, Modelling Extremal Events in Insurance and Finance, Springer 1997.

Stationarity of ARCH(1)

An excellent primer: Embrechts, Klüppelberg i Mikosch, Modelling Extremal Events in Insurance and Finance, Springer 1997.

- If $\beta>0$ and $\lambda \in\left(0,2 e^{\gamma}\right)$, then $\left\{X_{n}\right\}$ is a strictly stationary sequence if and only if

$$
X_{0}^{2} \sim \beta \sum_{m=1}^{\infty} Z_{m}^{2} \prod_{j=1}^{m-1}\left(\lambda Z_{j}^{2}\right) .
$$

Stationarity of ARCH(1)

An excellent primer: Embrechts, Klüppelberg i Mikosch, Modelling Extremal Events in Insurance and Finance, Springer 1997.

- If $\beta>0$ and $\lambda \in\left(0,2 e^{\gamma}\right)$, then $\left\{X_{n}\right\}$ is a strictly stationary sequence if and only if

$$
X_{0}^{2} \sim \beta \sum_{m=1}^{\infty} Z_{m}^{2} \prod_{j=1}^{m-1}\left(\lambda Z_{j}^{2}\right)
$$

- The sequence $\left\{X_{k}^{2}\right\}$ satisfies the equation of stochastic recursion:

$$
X_{k+1}^{2}=\beta Z_{k+1}^{2}+\left(\lambda Z_{k+1}^{2}\right) X_{k}^{2}=A_{k+1}+B_{k+1} X_{k}^{2}
$$

and this is the key argument!

Stochastic recursions

Equation $U=\mathcal{D} A+B U$
Example: squares of $\operatorname{ARCH}(1)$ processes
Example: squares of $\operatorname{GARCH}(1,1)$ processes
Recent results for stochastic recursions

Heavy tails of ARCH(1) processes

Stochastic recursions

Equation $U=\mathcal{D} A+B U$
Example: squares of $\operatorname{ARCH}(1)$ processes
Example: squares of $\operatorname{GARCH}(1,1)$ processes
Recent results for stochastic recursions

Heavy tails of ARCH(1) processes

- Let $\beta>0$ and $\lambda \in\left(0,2 e^{\gamma}\right)$ and let $\kappa>0$ be the unique positive root of the equation

$$
E\left(\lambda Z_{1}^{2}\right)^{u}=1 .
$$

Heavy tails of ARCH(1) processes

- Let $\beta>0$ and $\lambda \in\left(0,2 e^{\gamma}\right)$ and let $\kappa>0$ be the unique positive root of the equation

$$
E\left(\lambda Z_{1}^{2}\right)^{u}=1
$$

Then, as $x \rightarrow \infty$,

$$
\begin{gathered}
P\left(X_{0}>x\right) \sim \frac{C_{\beta, \lambda}}{2} x^{-2 \kappa}, \text { where } \\
C_{\beta, \lambda}=\frac{E\left[\left(\beta+\lambda X_{0}^{2}\right)^{\kappa}-\left(\lambda X_{0}^{2}\right)^{\kappa}\right]}{\kappa \lambda^{\kappa} E\left[\left(\lambda Z_{1}^{2}\right)^{\kappa} \ln \left(\lambda Z_{1}^{2}\right)\right]} \in(0,+\infty)
\end{gathered}
$$

Heavy tails of ARCH(1) processes

- Let $\beta>0$ and $\lambda \in\left(0,2 e^{\gamma}\right)$ and let $\kappa>0$ be the unique positive root of the equation

$$
E\left(\lambda Z_{1}^{2}\right)^{u}=1
$$

Then, as $x \rightarrow \infty$,

$$
\begin{gathered}
P\left(X_{0}>x\right) \sim \frac{C_{\beta, \lambda}}{2} x^{-2 \kappa}, \text { where } \\
C_{\beta, \lambda}=\frac{E\left[\left(\beta+\lambda X_{0}^{2}\right)^{\kappa}-\left(\lambda X_{0}^{2}\right)^{\kappa}\right]}{\kappa \lambda^{\kappa} E\left[\left(\lambda Z_{1}^{2}\right)^{\kappa} \ln \left(\lambda Z_{1}^{2}\right)\right]} \in(0,+\infty) .
\end{gathered}
$$

- This result essentially belongs to H. Kesten (1973)!

Heavy tails of ARCH(1) processes

- Let $\beta>0$ and $\lambda \in\left(0,2 e^{\gamma}\right)$ and let $\kappa>0$ be the unique positive root of the equation

$$
E\left(\lambda Z_{1}^{2}\right)^{u}=1
$$

Then, as $x \rightarrow \infty$,

$$
\begin{gathered}
P\left(X_{0}>x\right) \sim \frac{C_{\beta, \lambda}}{2} x^{-2 \kappa}, \text { where } \\
C_{\beta, \lambda}=\frac{E\left[\left(\beta+\lambda X_{0}^{2}\right)^{\kappa}-\left(\lambda X_{0}^{2}\right)^{\kappa}\right]}{\kappa \lambda^{\kappa} E\left[\left(\lambda Z_{1}^{2}\right)^{\kappa} \ln \left(\lambda Z_{1}^{2}\right)\right]} \in(0,+\infty)
\end{gathered}
$$

- This result essentially belongs to H. Kesten (1973)!
- A complete proof, one-dimensional and using ideas of Grinkevičius (1975), belongs to C. Goldie (1991).

Stochastic recursions Truncated moments of stochastic recursions CLT for GARCH(1,1) processes

Equation $U=\mathcal{D} A+B U$
Example: squares of $\mathrm{ARCH}(1)$ processes
Example: squares of $\operatorname{GARCH}(1,1)$ processes
Recent results for stochastic recursions

Example: squares of $\operatorname{GARCH}(1,1)$ processes

Stochastic recursions

Equation $U=\mathcal{D} A+B U$
Example: squares of $\mathrm{ARCH}(1)$ processes
Example: squares of $\operatorname{GARCH}(1,1)$ processes
Recent results for stochastic recursions

Example: squares of $\operatorname{GARCH}(1,1)$ processes

GARCH $=$ Generalized ARCH(Bollerslev, 1986)

Stochastic recursions
Truncated moments of stochastic recursions CLT for GARCH(1,1) processes

Equation $U=\mathcal{D} A+B U$
Example: squares of $\mathrm{ARCH}(1)$ processes
Example: squares of $\operatorname{GARCH}(1,1)$ processes
Recent results for stochastic recursions

Example: squares of $\operatorname{GARCH}(1,1)$ processes

GARCH $=$ Generalized ARCH(Bollerslev, 1986)

- A $\operatorname{GARCH}(1,1)$ process is given by the system or recurrence equations

$$
\begin{aligned}
X_{n} & =\sigma_{n} Z_{n} \\
\sigma_{n}^{2} & =\beta+\lambda X_{n-1}^{2}+\delta \sigma_{n-1}^{2}
\end{aligned}
$$

where $\beta, \lambda, \delta \geqslant 0,\left\{Z_{n}\right\}$ is an i.i.d. sequence satisfying $E Z_{n}=0, E Z_{n}^{2}=1$, and X_{0} is independent of $\left\{Z_{n}\right\}$.

Example: squares of $\operatorname{GARCH}(1,1)$ processes

GARCH $=$ Generalized ARCH(Bollerslev, 1986)

- A $\operatorname{GARCH}(1,1)$ process is given by the system or recurrence equations

$$
\begin{aligned}
X_{n} & =\sigma_{n} Z_{n} \\
\sigma_{n}^{2} & =\beta+\lambda X_{n-1}^{2}+\delta \sigma_{n-1}^{2}
\end{aligned}
$$

where $\beta, \lambda, \delta \geqslant 0,\left\{Z_{n}\right\}$ is an i.i.d. sequence satisfying $E Z_{n}=0, E Z_{n}^{2}=1$, and X_{0} is independent of $\left\{Z_{n}\right\}$.

- According to the relation

$$
\sigma_{n}^{2}=\beta+\left(\lambda Z_{n-1}^{2}+\delta\right) \sigma_{n-1}^{2}
$$

many of properties of $\operatorname{GARCH}(1,1)$ processes may be deduced from the corresponding properties of stochastic recursions.

Stochastic recursions
Truncated moments of stochastic recursions CLT for GARCH(1,1) processes

Equation $U=\mathcal{D} A+B U$
Example: squares of $\operatorname{ARCH}(1)$ processes
Example: squares of $\operatorname{GARCH}(1,1)$ processes
Recent results for stochastic recursions

Why to study $\operatorname{GARCH}(1,1)$ processes?

Stochastic recursions

Equation $U=\mathcal{D} A+B U$
Example: squares of $\mathrm{ARCH}(1)$ processes
Example: squares of $\operatorname{GARCH}(1,1)$ processes
Recent results for stochastic recursions

Why to study $\operatorname{GARCH}(1,1)$ processes?

- In the definition of $\operatorname{GARCH}(1,1)$ processes there are three parameters. This gives more flexibility in econometric modeling. So much that Engle was awarded with the Nobel Prize in 2003.

Equation $U=\mathcal{D} A+B U$

Why to study $\operatorname{GARCH}(1,1)$ processes?

- In the definition of $\operatorname{GARCH}(1,1)$ processes there are three parameters. This gives more flexibility in econometric modeling. So much that Engle was awarded with the Nobel Prize in 2003.
- It is interesting that the estimation of parameters on the base of real data gives values of $\lambda+\delta$ very close to 1 , e.g. 0,99 (Stărică).

Equation $U=\mathcal{D} A+B U$

Why to study $\operatorname{GARCH}(1,1)$ processes?

- In the definition of $\operatorname{GARCH}(1,1)$ processes there are three parameters. This gives more flexibility in econometric modeling. So much that Engle was awarded with the Nobel Prize in 2003.
- It is interesting that the estimation of parameters on the base of real data gives values of $\lambda+\delta$ very close to 1 , e.g. 0,99 (Stărică). But then things become subtle - 1 is a critical case.

Equation $U=\mathcal{D} A+B U$

Why to study $\operatorname{GARCH}(1,1)$ processes?

- In the definition of $\operatorname{GARCH}(1,1)$ processes there are three parameters. This gives more flexibility in econometric modeling. So much that Engle was awarded with the Nobel Prize in 2003.
- It is interesting that the estimation of parameters on the base of real data gives values of $\lambda+\delta$ very close to 1 , e.g. 0,99 (Stărică). But then things become subtle - 1 is a critical case.
- If $\left\{\sigma_{n}^{2}\right\}$ in $\operatorname{GARCH}(1,1)$ model is a stationary process with finite variance, then necessary $\lambda+\delta<1$ and

$$
E \sigma_{n}^{2}=\frac{\beta}{1-(\lambda+\delta)}
$$

Equation $U=\mathcal{D} A+B U$

Why to study $\operatorname{GARCH}(1,1)$ processes?

- In the definition of $\operatorname{GARCH}(1,1)$ processes there are three parameters. This gives more flexibility in econometric modeling. So much that Engle was awarded with the Nobel Prize in 2003.
- It is interesting that the estimation of parameters on the base of real data gives values of $\lambda+\delta$ very close to 1 , e.g. 0,99 (Stărică). But then things become subtle - 1 is a critical case.
- If $\left\{\sigma_{n}^{2}\right\}$ in $\operatorname{GARCH}(1,1)$ model is a stationary process with finite variance, then necessary $\lambda+\delta<1$ and

$$
E \sigma_{n}^{2}=\frac{\beta}{1-(\lambda+\delta)}
$$

- If $\lambda+\delta=1$ and $\left\{\sigma_{n}^{2}\right\}$ is stationary, then $E \sigma_{n}^{2}=+\infty$.

Stochastic recursions Truncated moments of stochastic recursions CLT for $\operatorname{GARCH}(1,1)$ processes

Equation $U={ }_{\mathcal{D}} A+B U$
Example: squares of $\mathrm{ARCH}(1)$ processes
Example: squares of $\operatorname{GARCH}(1,1)$ processes
Recent results for stochastic recursions

Recent results for stochastic recursions

Stochastic recursions

Equation $U=\mathcal{D} A+B U$
Example: squares of $\mathrm{ARCH}(1)$ processes
Example: squares of $\operatorname{GARCH}(1,1)$ processes
Recent results for stochastic recursions

Recent results for stochastic recursions

Y. Guivarc'h, Heavy tail properties of stationary solutions of multidimensional stochastic recursions, in: D. Denteneer, F. den Hollander and E. Verbitskiy (Eds.), Dynamics \& Stochastics: Festschrift in honor of M. S. Keane, IMS Lecture Notes-Monograph Series, 48 (2006), 85-99.

Recent results for stochastic recursions

Y. Guivarc'h, Heavy tail properties of stationary solutions of multidimensional stochastic recursions, in: D. Denteneer, F. den Hollander and E. Verbitskiy (Eds.), Dynamics \& Stochastics: Festschrift in honor of M. S. Keane, IMS Lecture Notes-Monograph Series, 48 (2006), 85-99.
Y. Guivarc'h and E. Le Page, On spectral properties of a family of transfer operators and convergence to stable laws for affine random walks. Ergodic Theory. Dynam. Systems, 28 (2008), 423-446.

Stochastic recursions Truncated moments of stochastic recursions CLT for $\operatorname{GARCH}(1,1)$ processes

Equation $U={ }_{\mathcal{D}} A+B U$
Example: squares of $\mathrm{ARCH}(1)$ processes
Example: squares of $\operatorname{GARCH}(1,1)$ processes
Recent results for stochastic recursions

Recent results for stochastic recursions

Equation $U=\mathcal{D} A+B U$
Example: squares of $\mathrm{ARCH}(1)$ processes
Example: squares of $\operatorname{GARCH}(1,1)$ processes
Recent results for stochastic recursions

Recent results for stochastic recursions

D. Buraczewski, E. Damek, Y. Guivarc'h, A. Hulanicki and R. Urban, Tail-homogeneity of stationary measures for some multidimensional stochastic recursions, Probab. Theory Related Fields, 145 (2009) 385-420.

Recent results for stochastic recursions

D. Buraczewski, E. Damek, Y. Guivarc'h, A. Hulanicki and R. Urban, Tail-homogeneity of stationary measures for some multidimensional stochastic recursions, Probab. Theory Related Fields, 145 (2009) 385-420.
D. Buraczewski, E. Damek and Y. Guivarc'h, Convergence to stable laws for a class multidimensional stochastic recursions, Probab. Theory Related Fields., DOI 0.1007/s00440-009-0233-7

Recent results for stochastic recursions

D. Buraczewski, E. Damek, Y. Guivarc'h, A. Hulanicki and R. Urban, Tail-homogeneity of stationary measures for some multidimensional stochastic recursions, Probab. Theory Related Fields, 145 (2009) 385-420.
D. Buraczewski, E. Damek and Y. Guivarc'h, Convergence to stable laws for a class multidimensional stochastic recursions, Probab. Theory Related Fields., DOI 0.1007/s00440-009-0233-7
K. Bartkiewicz, A. Jakubowski, T. Mikosch and O. Wintenberger, Stable limits for sums of dependent infinite variance random variables, Probab. Theory Related Fields, DOI 10.1007/s00440-010-0276-9.

Stochastic recursions
Truncated moments of stochastic recursions
CLT for $\operatorname{GARCH}(1,1)$ processes

Yet another example Assumptions
Theorem
Asymptotics of truncated moments - comments

Yet another example

Yet another example
Assumptions
Theorem
Asymptotics of truncated moments - comments

Yet another example

Consider the $\mathrm{ARCH}(1)$ recurrence with $\beta=1, \lambda=1$ and

$$
P\left(Z_{n}=0\right)=1 / 2, P\left(Z_{n}=\sqrt{2}\right)=P\left(Z_{n}=-\sqrt{2}\right)=1 / 4
$$

Yet another example

Consider the $\operatorname{ARCH}(1)$ recurrence with $\beta=1, \lambda=1$ and

$$
P\left(Z_{n}=0\right)=1 / 2, P\left(Z_{n}=\sqrt{2}\right)=P\left(Z_{n}=-\sqrt{2}\right)=1 / 4
$$

Then

$$
U_{\infty}=\sum_{k=1}^{\infty} \prod_{j=1}^{k} Z_{j}^{2} .
$$

has the stationary distribution for squares of the corresponding $\mathrm{ARCH}(1)$ process.

Yet another example

Consider the $\operatorname{ARCH}(1)$ recurrence with $\beta=1, \lambda=1$ and

$$
P\left(Z_{n}=0\right)=1 / 2, P\left(Z_{n}=\sqrt{2}\right)=P\left(Z_{n}=-\sqrt{2}\right)=1 / 4
$$

Then

$$
U_{\infty}=\sum_{k=1}^{\infty} \prod_{j=1}^{k} Z_{j}^{2} .
$$

has the stationary distribution for squares of the corresponding $\mathrm{ARCH}(1)$ process. But there is no $C>0$ such that

$$
P\left(U_{\infty}>x\right) \sim C x^{-1}
$$

and so Kesten's theorem does not work in this simple example.

Yet another example Assumptions
Theorem
Asymptotics of truncated moments - comments

Assumptions

Yet another example

Assumptions

We assume non-negativity: $P(A \geqslant 0)=P(B \geqslant 0)=1$

Assumptions

We assume non-negativity: $P(A \geqslant 0)=P(B \geqslant 0)=1$ and non-degeneracy:

$$
\begin{aligned}
& P(B=1)<1, \\
& P(A=0)<1 .
\end{aligned}
$$

Assumptions

We assume non-negativity: $P(A \geqslant 0)=P(B \geqslant 0)=1$ and non-degeneracy:

$$
\begin{aligned}
& P(B=1)<1, \\
& P(A=0)<1 .
\end{aligned}
$$

As usually we assume that there exists a constant $\kappa>0$ such that

$$
\begin{aligned}
& E B^{\kappa}=1, \\
& E A^{\kappa}<+\infty .
\end{aligned}
$$

Assumptions

We assume non-negativity: $P(A \geqslant 0)=P(B \geqslant 0)=1$ and non-degeneracy:

$$
\begin{aligned}
& P(B=1)<1, \\
& P(A=0)<1 .
\end{aligned}
$$

As usually we assume that there exists a constant $\kappa>0$ such that

$$
\begin{aligned}
& E B^{\kappa}=1, \\
& E A^{\kappa}<+\infty .
\end{aligned}
$$

Remark: the function $\psi(p)=E B^{p} I(B>0)$ is strictly convex in ($0, \kappa$) and we have $\psi(\kappa)=1$ and $\psi(p)<1$ in $(0, \kappa)$.

Assumptions

We assume non-negativity: $P(A \geqslant 0)=P(B \geqslant 0)=1$ and non-degeneracy:

$$
\begin{aligned}
& P(B=1)<1, \\
& P(A=0)<1 .
\end{aligned}
$$

As usually we assume that there exists a constant $\kappa>0$ such that

$$
\begin{aligned}
& E B^{\kappa}=1 \\
& E A^{\kappa}<+\infty
\end{aligned}
$$

Remark: the function $\psi(p)=E B^{p} I(B>0)$ is strictly convex in $(0, \kappa)$ and we have $\psi(\kappa)=1$ and $\psi(p)<1$ in $(0, \kappa)$. Hence

$$
E B^{\kappa} \ln B \in(0,+\infty]
$$

Stochastic recursions
Truncated moments of stochastic recursions CLT for $\operatorname{GARCH}(1,1)$ processes

Yet another example
Assumptions
Theorem
Asymptotics of truncated moments - comments

Theorem on asymptotics of truncated moments

Theorem on asymptotics of truncated moments

Theorem

If

$$
\int_{1}^{\infty} E B^{\kappa} I\{B>u\} d u / u=E B^{\kappa} \ln ^{+} B<+\infty
$$

then

$$
E U^{\kappa} I\{U \leqslant t\} \sim \frac{E\left((A+B U)^{\kappa}-(B U)^{\kappa}\right)}{E B^{\kappa} \ln B} \ln t .
$$

Theorem on asymptotics of truncated moments

Theorem

If

$$
\int_{1}^{\infty} E B^{\kappa} I\{B>u\} d u / u=E B^{\kappa} \ln ^{+} B<+\infty
$$

then

$$
E U^{\kappa} I\{U \leqslant t\} \sim \frac{E\left((A+B U)^{\kappa}-(B U)^{\kappa}\right)}{E B^{\kappa} \ln B} \ln t .
$$

If

$$
\int_{1}^{t} E B^{\kappa} I\{B>u\} d u / u=\ell(\ln t)
$$

for some slowly varying function $\ell: \boldsymbol{R}^{+} \rightarrow \boldsymbol{R}^{+}, \ell(x) \rightarrow \infty$, then

$$
E U^{\kappa} I\{U \leqslant t\} \sim E\left((A+B U)^{\kappa}-(B U)^{\kappa}\right) \frac{\ln t}{\ell(\ln t)} .
$$

Stochastic recursions
Truncated moments of stochastic recursions CLT for $\operatorname{GARCH}(1,1)$ processes

Yet another example
Assumptions
Theorem
Asymptotics of truncated moments - comments

Asymptotics of truncated moments - comments

Yet another example

Asymptotics of truncated moments - comments

It is well known that

$$
P(U>t) \sim C t^{-\kappa}, \text { as } t \rightarrow \infty
$$

implies

$$
E U^{\kappa} I\{U \leqslant t\} \sim \kappa C \ln t .
$$

Asymptotics of truncated moments - comments

It is well known that

$$
P(U>t) \sim C t^{-\kappa}, \text { as } t \rightarrow \infty,
$$

implies

$$
E U^{\kappa} I\{U \leqslant t\} \sim \kappa C \ln t .
$$

Hence our theorem provides an alternative way of identifying the constant in Kesten's theorem.

$$
C=\frac{E\left((A+B U)^{\kappa}-(B U)^{\kappa}\right)}{\kappa E B^{\kappa} \ln B} .
$$

Asymptotics of truncated moments - comments

It is well known that

$$
P(U>t) \sim C t^{-\kappa}, \text { as } t \rightarrow \infty
$$

implies

$$
E U^{\kappa} I\{U \leqslant t\} \sim \kappa C \ln t .
$$

Hence our theorem provides an alternative way of identifying the constant in Kesten's theorem.

$$
C=\frac{E\left((A+B U)^{\kappa}-(B U)^{\kappa}\right)}{\kappa E B^{\kappa} \ln B} .
$$

But the theorem also shows that there exist solutions to the equation $U=_{\mathcal{D}} A+B U$, which admit different from the polynomial asymptotics of tail probabilities.

Stochastic recursions Truncated moments of stochastic recursions

CLT for GARCH(1,1) processes

CLT for GARCH $(1,1)$ processes
Refinements
The sketch of the proof
CLT - conjecture

CLT for $\operatorname{GARCH}(1,1)$ processes with $\lambda+\delta=1$

Stochastic recursions Truncated moments of stochastic recursions CLT for $\operatorname{GARCH}(1,1)$ processes

CLT for GARCH $(1,1)$ processes
Refinements
The sketch of the proof
CLT - conjecture

CLT for $\operatorname{GARCH}(1,1)$ processes with $\lambda+\delta=1$

Remark: If $\lambda+\delta=1$, then $\kappa=1$ for $\left\{X_{k}^{2}\right\}$.

CLT for GARCH $(1,1)$ processes

CLT for $\operatorname{GARCH}(1,1)$ processes with $\lambda+\delta=1$

Remark: If $\lambda+\delta=1$, then $\kappa=1$ for $\left\{X_{k}^{2}\right\}$.

Theorem

Let $\left\{X_{k}\right\}$ be a $\operatorname{GARCH}(1,1)$ process, $\beta>0, \lambda+\delta=1$. If $\left\{Z_{k}\right\}$ is such that $\left\{X_{k}\right\}$ is α-mixing with exponential rate and

$$
\int_{1}^{t} E\left(\delta+\lambda Z^{2}\right)!\left\{\left(\delta+\lambda Z^{2}\right)>u\right\} d u / u=\ell(\ln t),
$$

then

$$
\sqrt{\frac{\ell(\ln n)}{n \ln n}}\left(X_{1}+X_{2}+\ldots+X_{n}\right) \underset{\mathcal{D}}{\longrightarrow} \mathcal{N}(0, \beta) .
$$

CLT for $\operatorname{GARCH}(1,1)$ processes with $\lambda+\delta=1$

Remark: If $\lambda+\delta=1$, then $\kappa=1$ for $\left\{X_{k}^{2}\right\}$.

Theorem

Let $\left\{X_{k}\right\}$ be a $\operatorname{GARCH}(1,1)$ process, $\beta>0, \lambda+\delta=1$. If $\left\{Z_{k}\right\}$ is such that $\left\{X_{k}\right\}$ is α-mixing with exponential rate and

$$
\int_{1}^{t} E\left(\delta+\lambda Z^{2}\right)!\left\{\left(\delta+\lambda Z^{2}\right)>u\right\} d u / u=\ell(\ln t),
$$

then

$$
\sqrt{\frac{\ell(\ln n)}{n \ln n}}\left(X_{1}+X_{2}+\ldots+X_{n}\right) \underset{\mathcal{D}}{\longrightarrow} \mathcal{N}(0, \beta) .
$$

Remark: if, for example, $\ell(x)=\ln x$ then we have a limit theorem with norming $\sqrt{n \ln n / \ln \ln n}$.

Stochastic recursions
Truncated moments of stochastic recursions
CLT for $\operatorname{GARCH}(1,1)$ processes

CLT for GARCH(1,1) processes

Refinements

The sketch of the proof
CLT - conjecture

Refinements

Refinements

- Donsker's Theorem for processes

$$
S_{n}(t)=\sqrt{\frac{\ell(\ln n)}{\beta n \ln n}} \sum_{k=1}^{[n t]} X_{k} .
$$

Refinements

- Donsker's Theorem for processes

$$
S_{n}(t)=\sqrt{\frac{\ell(\ln n)}{\beta n \ln n}} \sum_{k=1}^{[n t]} X_{k} .
$$

- In the theorem we did not mention stationarity. The theorem holds under arbitrary initial distribution!

Stochastic recursions Truncated moments of stochastic recursions CLT for GARCH(1,1) processes

The sketch of the proof CLT - conjecture

The sketch of the proof

We apply the martingale CLT.

The sketch of the proof

We apply the martingale CLT. We know that

$$
\sigma_{n}^{2}=\beta+\left(\lambda Z_{n-1}^{2}+\delta\right) \sigma_{n-1}^{2}
$$

is the conditional variance of X_{n}. (Generalized, for $E X_{k}^{2}=\infty$ under stationary distribution and if $\ell(x) \rightarrow \infty$.)

The sketch of the proof

We apply the martingale CLT. We know that

$$
\sigma_{n}^{2}=\beta+\left(\lambda Z_{n-1}^{2}+\delta\right) \sigma_{n-1}^{2}
$$

is the conditional variance of X_{n}. (Generalized, for $E X_{k}^{2}=\infty$ under stationary distribution and if $\ell(x) \rightarrow \infty$.) And by the main theorem we know asymptotics of the truncated expectation of σ_{0}^{2} under the stationary distribution!

The sketch of the proof

We apply the martingale CLT. We know that

$$
\sigma_{n}^{2}=\beta+\left(\lambda Z_{n-1}^{2}+\delta\right) \sigma_{n-1}^{2}
$$

is the conditional variance of X_{n}. (Generalized, for $E X_{k}^{2}=\infty$ under stationary distribution and if $\ell(x) \rightarrow \infty$.) And by the main theorem we know asymptotics of the truncated expectation of σ_{0}^{2} under the stationary distribution! The most difficult task is to show

$$
\frac{\ell(\ln n)}{\beta n \ln n}\left(\sigma_{0}^{2}+\sigma_{1}^{2}+\ldots+\sigma_{n-1}^{2}\right) \underset{\mathcal{P}}{\longrightarrow} 1 .
$$

Here the sequence is stationary ergodic, but the expectation is infinite!

The sketch of the proof

We apply the martingale CLT. We know that

$$
\sigma_{n}^{2}=\beta+\left(\lambda Z_{n-1}^{2}+\delta\right) \sigma_{n-1}^{2}
$$

is the conditional variance of X_{n}. (Generalized, for $E X_{k}^{2}=\infty$ under stationary distribution and if $\ell(x) \rightarrow \infty$.) And by the main theorem we know asymptotics of the truncated expectation of σ_{0}^{2} under the stationary distribution! The most difficult task is to show

$$
\frac{\ell(\ln n)}{\beta n \ln n}\left(\sigma_{0}^{2}+\sigma_{1}^{2}+\ldots+\sigma_{n-1}^{2}\right) \underset{\mathcal{P}}{\longrightarrow} 1 .
$$

Here the sequence is stationary ergodic, but the expectation is infinite!
There exists a specific result of this type.

Stochastic recursions
Truncated moments of stochastic recursions
CLT for $\operatorname{GARCH}(1,1)$ processes

CLT for GARCH(1,1) processes
Refinements
The sketch of the proof CLT - conjecture

Szewczak's law of large numbers

Szewczak's law of large numbers

Theorem (Szewczak (2005))

Let $\left\{Y_{k}\right\}$ be a strongly mixing strictly stationary sequence. Suppose that

Szewczak's law of large numbers

Theorem (Szewczak (2005))

Let $\left\{Y_{k}\right\}$ be a strongly mixing strictly stationary sequence. Suppose that

- $U_{2}(x)=E Y_{k}^{2} I\left\{\left|Y_{k}\right| \leqslant x\right\}$ is a slowly varying function, $U_{2}(\infty)=\infty$;

Szewczak's law of large numbers

Theorem (Szewczak (2005))

Let $\left\{Y_{k}\right\}$ be a strongly mixing strictly stationary sequence. Suppose that

- $U_{2}(x)=E Y_{k}^{2} I\left\{\left|Y_{k}\right| \leqslant x\right\}$ is a slowly varying function, $U_{2}(\infty)=\infty$;
- $\left\{b_{n}\right\}$ is such that $b_{n}^{2} \sim n U_{2}\left(b_{n}\right)$;

Szewczak's law of large numbers

Theorem (Szewczak (2005))

Let $\left\{Y_{k}\right\}$ be a strongly mixing strictly stationary sequence. Suppose that

- $U_{2}(x)=E Y_{k}^{2} I\left\{\left|Y_{k}\right| \leqslant x\right\}$ is a slowly varying function, $U_{2}(\infty)=\infty$;
- $\left\{b_{n}\right\}$ is such that $b_{n}^{2} \sim n U_{2}\left(b_{n}\right)$;
- $n \alpha\left(\left\lfloor r_{n}\right\rfloor\right) / r_{n} \rightarrow 0$, where

Szewczak's law of large numbers

Theorem (Szewczak (2005))

Let $\left\{Y_{k}\right\}$ be a strongly mixing strictly stationary sequence. Suppose that

- $U_{2}(x)=E Y_{k}^{2} I\left\{\left|Y_{k}\right| \leqslant x\right\}$ is a slowly varying function, $U_{2}(\infty)=\infty$;
- $\left\{b_{n}\right\}$ is such that $b_{n}^{2} \sim n U_{2}\left(b_{n}\right)$;
- $n \alpha\left(\left\lfloor r_{n}\right\rfloor\right) / r_{n} \rightarrow 0$, where

$$
r_{n}=\left(\frac{b_{n} U_{2}\left(b_{n}\right)}{E|Y|^{3} /\left\{\left|Y_{k}\right| \leqslant b_{n}\right\}}\right)^{2} .
$$

Szewczak's law of large numbers

Theorem (Szewczak (2005))

Let $\left\{Y_{k}\right\}$ be a strongly mixing strictly stationary sequence. Suppose that

- $U_{2}(x)=E Y_{k}^{2} I\left\{\left|Y_{k}\right| \leqslant x\right\}$ is a slowly varying function, $U_{2}(\infty)=\infty$;
- $\left\{b_{n}\right\}$ is such that $b_{n}^{2} \sim n U_{2}\left(b_{n}\right)$;
- $n \alpha\left(\left\lfloor r_{n}\right\rfloor\right) / r_{n} \rightarrow 0$, where

$$
r_{n}=\left(\frac{b_{n} U_{2}\left(b_{n}\right)}{E|Y|^{3} /\left\{\left|Y_{k}\right| \leqslant b_{n}\right\}}\right)^{2} .
$$

Then

$$
\frac{Y_{0}^{2}+Y_{1}^{2}+\ldots+Y_{n-1}^{2}}{b_{n}^{2}} \xrightarrow[\mathcal{P}]{\longrightarrow} 1 .
$$

CLT for $\operatorname{GARCH}(1,1)$ processes - conjecture

The conjectured form of the theorem

Let $\left\{X_{k}\right\}$ be a $\operatorname{GARCH}(1,1)$ process, $\beta>0, \lambda+\delta=1$. If $\left\{Z_{k}\right\}$ is such that

$$
\int_{1}^{t} E\left(\delta+\lambda Z^{2}\right) \backslash\left\{\left(\delta+\lambda Z^{2}\right)>u\right\} d u / u=\ell(\ln t),
$$

then

$$
\sqrt{\frac{\ell(\ln n)}{n \ln n}}\left(X_{1}+X_{2}+\ldots+X_{n}\right) \underset{\mathcal{D}}{\longrightarrow} \mathcal{N}(0, \beta) .
$$

